This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JI0T.2020.2990666

Fair and Privacy-Respecting Bitcoin Payments for
Smart Grid Data

Tassos Dimitriou, Senior Member, IEEE, Ameer Mohammed

Abstract—In this work we present DPTS, a data payment
and transfer scheme that uses bitcoin payments to reward
users for detailed electricity measurements they submit to a
utility provider. DP7TS emphasizes both privacy and fairness
of transactions; not only it allows participants to earn bitcoins
in a way that cannot be linked to their actions or identities but
also ensures that data is delivered if and only if an appropriate
payment is received. While DPTS is described in the smart
grid setting, the protocol can also be applied in other areas
where incentives are used to increase user participation. One
such important area is participatory or crowd-sensing, where
individuals use their smartphones to report sensed data back to
a campaign administrator and obtain a reward for it. DPTS
allows users to enjoy the benefits of participation without
compromising anonymity. The proposal is coupled with a security
analysis showing the privacy-preserving character of the system
along with an efficiency analysis demonstrating the feasibility of
our approach.

Index Terms—Smart grid, Crowd sensing, Privacy, Fair-
ness, Data reporting, Rewarding mechanisms, Bitcoin payments,
Blockchain, zkSNARKSs

I. INTRODUCTION

Smart grid technologies utilize a two way flow and trans-
mission of electricity in an effort to improve reliability and
efficiency of the electric grid. At the core of the smart grid lie
‘smart meters’, devices deployed at consumer locations that
provide real-time monitoring of electricity consumption. This
advanced metering infrastructure helps provide better situa-
tional awareness of the electric power system, thus reducing
outages, improving reliability, and benefiting both users and
electricity providers from a balanced utilization of energy and
lower costs.

However, as meters transmit power-usage information to
the utility provider, there are serious concerns with respect
to the privacy-invasive character of these devices. Indeed, the
frequent collection of energy data can be used to profile users
and their home devices, thus revealing detailed information
about behaviors, activities or preferences of inhabitants [1].

Given that most users are reluctant to submit detailed
measurements, the use of incentives or rewards may be one
of the few mechanisms to solicit user collaboration for even
more detailed measurements than those allowed by regulatory
frameworks. For example, instead of reporting data every
hour, the user may be willing to increase the frequency and

T. Dimitriou is affiliated with the Computer Engineering Dept. Kuwait
University, Kuwait. Email: tassos.dimitriou @ieee.org (Corresponding author).

A. Mohammed is affiliated with the Computer Engineering Dept. Kuwait
University, Kuwait. Email: ameer.mohammed @ku.edu.kw

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

the granularity of submitted data. Rewarding schemes could
then be used by utility providers to attract a large number
of participants, thus better mapping the state of the grid and
offering an even better service back to the users.

What makes this problem challenging is that security and
privacy are two contradictory objectives; on one hand only
authenticated meters should benefit from the use of rewarding
services such as the ones used for submitting energy data.
On the other hand, the identity of the meter/user or other
contextual information should not serve as a unique identifier
that can be used to filter the meter’s transactions or link it
with other activities and thus leak sensitive user information.
However, even if the above issues are solved, a last remaining
issue is the fairness problem, which in the context of secure
multi-party computation protocols, states that either both the
meter and provider receive their desired output or neither of
them will. This is exemplified by the following scenario.

Consider a user Alice who has agreed to report more
detailed measurements to a Utility Provider ((/P). Obviously
Alice cannot send her data directly to the UP because (i)
user privacy is violated, and (ii) the /P might mis-behave,
i.e. obtain the data and then refuse to credit Alice for it.
Conversely, if the UP first rewards Alice for some promised
data, Alice might not send the data at all.

Is there a way to send electricity data in a private way so
that none of the parties can cheat the other? While the privacy
problem can be solved using various aggregation techniques
([21, [3], [4]), the fair exchange is a fundamental problem that
cannot be solved in general without the use of a trusted third
party.

In typical on-line payment systems (e.g. using credit cards
or bank transfers) the buyer cannot be easily cheated since
if something goes wrong the payment can be reversed. For
example, if a particular product is never delivered, the buyer
can claim its money back. The centralized character of the
system ensures that none of the parties can be in disadvantage.
However, the situation is quite different with blockchain-based
currencies like Bitcoin. In such a system, once a transaction
is posted and finalized in the blockchain, it cannot be reversed
unless the seller voluntarily agrees to return the money back.
In general, nothing prevents the seller to keep both the money
and the product. This is further magnified by the fact that both
parties may interact through pseudonymous IDs.

Contributions: In this work we propose DPTS, a data
payment and transfer scheme that uses Bitcoin payments for
the trading of smart grid data between the owner of a smart
meter and a utility provider. Our protocol is fair, ensuring no
party can cheat the other; in particular, data is delivered if and

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

only if an appropriate payment is received, essentially making
the protocol atomic. Additionally, the payment is proportional
to the value of the data as captured by a public utility function.
Hence another key requirement is to compute the correct utility
prior to the release of the user data.

We have thoroughly analyzed the security and privacy
aspects of the proposal and have showed that DPTS is indeed
privacy preserving. We have also studied the efficiency aspects
of the proposal demonstrating its practicality as the bitcoin
network is only used for the transfer of bitcoins while the
majority of the protocol’s steps take place offchain.

DPTS is complementary to all approaches that try to
enhance user privacy when reporting detailed electricity mea-
surements to a utility provider. Every time such data is sub-
mitted, our scheme can be used to ensure that an appropriate
bitcoin amount will be credited to the user’s untraceable
address.

Our proposal also fits nicely in other areas where rewarding
schemes can be used to encourage user participation. One
such important area is participatory or crowd-sensing, where
individuals use their smartphones (or other sensing devices) to
collect data of common interest (environmental, physiological,
etc.) and report them back to a campaign administrator [5], [6].
The use of appropriate rewarding mechanisms to increase user
participation is critical to the success of mobile crowd-sensing
applications. The generic character of DPTS fits nicely in this
domain as well.

Organization: The rest of the paper is organized as follows.
In Section II, we review related work on trading data using
Bitcoin. In Section III, we introduce our security and privacy
model, the main operations allowed in our scheme and the
basic tools we will be using throughout this work. The
details of DTPS can be found in Section IV. Its security
and efficiency aspects are analyzed in Section V. Further
extensions of DT PS are discussed in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK

There is an extensive literature for the problem of fair
exchange in which two parties want to swap digital items such
that neither of them can cheat the other. However, fairness
cannot be achieved without the presence of a trusted third
party (TTP) as was shown in [7]. Hence protocols rely on the
use of a honest TTP which can help the two parties exchange
the items fairly.

A TTP can be online or offline. An online TTP always
mediates between the two parties to ensure the fairness of
the exchange [8]. A more interesting case is when the TTP
is offline in which case the TTP intervenes only if there is
a dispute. Protocols of this kind are called optimistic fair
exchange protocols [9]. In the common case where Alice and
Bob are honest and behave correctly, the TTP does not have
to be involved.

In this work, the Bitcoin blockchain will acquire the role
of the “trusted party” in a fair exchange protocol. A few prior
works already adopted this view. For example, in [10], Bitcoin
is used to implement a penalty mechanism to enforce the

http://dx.doi.org/10.1109/JI0T.2020.2990666

proper behavior of the participants. Liu et al. [11] leverage
the functionality of the Bitcoin blockchain to instantiate known
protocols for the fair exchange of a cryptocurrency payment
for a receipt. However, the work in [11] resides on the use of
Ethereum smart contracts which assume a richer functionality
from the underlying blockchain network. In particular, since
users need to pay fees to execute a smart contract, storing
and computing complex instructions typically results in high
costs. Another fair exchange protocol based on Ethereum is
FairSwap [12] which emphasizes on reducing the cost for
running the smart contract on the blockchain.

Our protocol uses the Bitcoin protocol without assuming
much from its scripting language: all we need is the ability to
create a bitcoin payment transaction that specifies a value h
for which anyone with an appropriate pre-image = such that
Hash(xz) = h can claim the money. As this is the only part
of the protocol that has to be executed in the blockchain, this
greatly simplifies adoption.

Similarly to our proposal, Zero Knowledge Contingent Pay-
ments [13] use Bitcoin in combination with zero knowledge
proofs to sell a secret, for example a solution to a sudoku
puzzle. In this case the secret is a key used to encrypt the
advertized solution. The key is released if and only if a
payment is received thus guaranteeing strong fairness of the
exchange. This work was later extended in [14] to allow a
seller to receive payments after proving that a certain service
has been rendered (as opposed to selling a secret in [13]).

In a setting similar to ours, Wang et al. [15] use bitcoins
to reward users participating in crowd-sensing, however the
protocol relies on miners verifying the quality of sensed data.
Hence a malicious miner may forward the data to the server
thus undermining the fairness of the process. CrowdBC [16]
is another protocol tailored for crowd-sensing applications.
However, miners again play a central role in collecting and
evaluating user submitted data, hence they may collude with
the provider and leak user sensitive information as well as
the data themselves. Lu et al. [17] use smart contracts to
handle both worker submissions and payments by the collector,
however as all information goes through the smart contract this
essentially turns the system into a centralized one. Finally, the
work of Duan et al. [18] is also based on smart contracts
bearing monetary rewards. Unfortunately, the threat model is
very limited as the authors assume that data consumers and the
service provider do not collude with each other since otherwise
data confidentiality and user privacy is lost.

Our work avoids the use of smart contracts which essentially
turn the system into a centralized one as all data have to
go through the smart contract. Furthermore, smart contract
transactions induce direct monetary costs to the collector, thus
affecting the practicality of large scale systems. As we don’t
rely on miners to handle data submissions, the possibility of
collusion is eliminated. Finally, most of the protocol steps
take place offchain, thus contributing to the efficiency of our
protocol.

A summary of the properties achieved by DPTS and a
comparison with the most relevant works is shown in Table I.
For token-based approaches that do not utilize the blockchain
network the reader is referred to [19].

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

TABLE I
COMPARISON WITH EXISTING PROTOCOLS

. This
Properties [15] [16] [17] | [18] work
Smart contract based | Yes Yes Yes | Yes No
Integrity v v v v v
Confidentiality v v v v v
Privacy/Anonymity - ot v - v
Fairness e I - v

v': Provided ¢ : Partially provided -: Not provided

1. Possible collusion between malicious miners and U/7P.
Miners evaluate solution beforehand.

3. User identities are handled by smart contract.

4. Solution encrypted with L/P’s public key.

III. SYSTEM MODEL AND ASSUMPTIONS

In this work, we consider the setting in which owners of
smart meters are willing to report detailed electricity mea-
surements to a utility provider and then get rewarded for the
data they provide.

A. System model

We consider a network where meters M associated with
different households and owned by users I/ are connected to a
Utility Provider U{P. Within this setting, we propose a protocol
to report detailed measurements that ensures two main security
properties: (i) privacy, guaranteeing that neither the provider
nor other users of the system can learn anything about the
user/meter identity during the data reporting and rewarding
phases of the protocol. (ii) fairness, making sure that no party
can cheat the other. Thus a provider cannot obtain the data
for free or, more generally, in a price smaller than the data’s
worth. Similarly, a user cannot obtain a reward and refuse to
release the data or, more generally, release data whose value
is less than the promised one by the provider.

Our goal is to keep meters simple and to rely on cryp-
tographic operations outside the tamper-evident part of the
meter. For this reason, all operations are offloaded to the user
who can afford larger connectivity and can deliver informa-
tion about energy usage without imposing any computational
overhead on the meters.

Figure 1 illustrates the main use case we would like to sup-
port. As detailed meter data can be used to extract appliance
usage and track user activities, we differentiate between two
types of data for smart metering. The first includes customer
data that can be tied to a particular household and are sent
directly by the meter to the utility provider. This is low-
frequency data (e.g. every few days) that can typically be used
for billing and management purposes. The second category
includes detailed usage data that can be used to enhance power
network management, facilitate demand response, improve
energy generation and distribution, and so on. These data
go beyond what is allowed by regulatory frameworks to
collect, they are high-frequency data (e.g. every few seconds
or minutes) and are highly sensitive as they impose a threat
to customer privacy.

http://dx.doi.org/10.1109/JI0T.2020.2990666

&3 I Billing Data | I
Smart meter
(M) /
Detailed
Measurements (m;) @ Registration ~
- N
/)
!
@ DPTS =])
“’ Privacy @ EE Reporting and Validation Utility provider
) Friendly P
N Computations @'
User
. ®

@ﬁ Obtaining reward for data

Home boundary:

Detailed measurements never
leave this boundary unless user
obtains reward. -

Blockchain network

Fig. 1. System Model - Data submission and rewarding phases.

The user is in possession of these detailed measurements
and may choose to release them for a sufficient monetary
reward. The use of such incentives can help utility providers
attract a larger number of participants, thus increasing both the
size and the quality of collected data. Hence, these data never
leave the home boundary unless the user obtains an appropriate
reward for them.

Privacy-friendly calculations are performed on the user side
along with proofs of correct valuation of the data. These proofs
are then relayed back to the provider for verification and
testing. If the provider is satisfied, the data are exchanged
in a fair manner using the blockchain network. This mode of
operation fits other domains where a provider is interested
in obtaining user data such as, for example, participatory
or crowd-sensing. Hence, with minimal modifications, our
framework can also be used in incentivizing users to sense
and collect data using their smart phones.

Figure 1 summarizes the core operations expected in our
model. Before a user engages in data exchange, she must
register first (Step 1). This is a one-time step needed for
accountability purposes, i.e. to ensure that only authorized
meter owners can participate in the system. However, this step
does not have a negative impact on user privacy as we make
sure that users remain anonymous in all subsequent phases of
the protocol. In the main operational phase, the user submits
encrypted data (Step 2) and collects bitcoin payments (Step
3). However to ensure that no party can cheat the other (the
provider refusing to pay the user after getting the data, or the
user refusing to release the data after getting paid), Step 5
is using the Blockchain network to ensure fairness. The key
used to encrypt the data will be released if and only if an
appropriate payment is received.

However, since the provider does not have access to the
data beforehand, he also needs to be sure that electricity
consumption data cons worth some value val according to
some utility function Util() that has been established by UP.
The utility function Util : cons — value is a public function
that takes in consumption data cons and outputs a value to

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

be paid to the user for the data provided. The total value
is computed by adding the individual values corresponding
to all consumption data provided by M, i.e. if n is the
number of measurements, valu€iorg = 2?21 value;. To solve
the fairness problem mentioned before, the user does not
immediately reveal the measurements but commits to them and
to the value to be rewarded. The UP, using the commitments,
evaluates itself the total value to be paid and if everything
checks out, the data is exchanged simultaneously with the
computed reward.

Here we consider Utility functions that are fairly typical,
however we place an emphasis on efficiency. We first exem-
plify our construction with a Linear Utility that sets a value for
each unit of data provided. In this case, the utility is given by
the expression val = a;-cons+ay, specifying the value gained
for each unit of consumption. Linear utilities can also be
generalized to families of linear functions indicating a different
utility to be applied depending on time of date, volume of
consumption, etc. These factors determine the constants ag, a1
to be applied, however it will always be clear from the context
(see also [20] for similar assumptions on pricing functions)
which function should be applied. These functions are known
in advance and are signed by the utility provider. In the sequel,
we will also extend our results by considering more complex
utility functions.

B. Definition of Data Transfer and Payment Scheme

The main operations of DT PS are listed below. These
enable meters (through their owners) to register, evaluate
utilities, submit electricity data, receive payments, and so
on. For simplicity the terms ‘owners of meters’, ‘users’ and
‘meters’ will be used interchangeably when no conflict arises
from the context.

e Setup(1”®) — CRS is a probabilistic algorithm that on
input a security parameter x generates a public common
reference string CRS to be used in the more advanced
operations of the system.

« UGen(U,CRS) — (pku, sku) is the user’s key genera-
tion algorithm which takes CRS as input and returns a
public and private key pair (pky, sky)-

o« UPGen(UP,CRS) — (pkup,skup) is the utility
provider’s key generation algorithm which takes CRS
as input and returns a public and private key pair
(Pkup, skup).

o Register(/,UP) — (pk;,, sky;, Certy) is a protocol
executed between a user U and the provider &/’P. The out-
come of this protocol is a pair of ephemeral public/private
keys which will be used by the owner ¢/ of the meter
to submit meter data and obtain payment. Additionally,
the algorithm outputs a certificate Cert;, that acts as an
authorization credential allowing only authorized users
to “sell” their data to the utility provider in a privacy-
preserving manner.

o EvalUtility(U, {m;}) — ({¢;},val,rya1,0) is a protocol
executed by an authorized user U/. The output is a set
of commitments {c;} for the data {m;}, the value val
expected to be paid for the data after applying the utility

http://dx.doi.org/10.1109/JI0T.2020.2990666

function Util(), the sum of randomness 7,4, used in
constructing the commitments, and a signature o of the
data signed with the ephemeral key sk;;. The output
values will be sent to the provider offchain through the
use of an anonymizing network.

o ViyUtility({c};, val, rvar, o, pkf;, Cert(he)) — {L, T}is
a protocol executed by UP to check if the value val
claimed by the user for the data committed in {c};
is correct or not. If it is correct, Cert(h.) is a valid
certificate for the public key pk;;,, and o is a valid
signature then it returns T. Otherwise, it returns L.

» RedeemData(U,UUP) — {L, T} is a protocol executed
between the user U/ and the provider UP. At a high
level, the owner encrypts the data m; with an ephemeral
key K and sends the encrypted data and the hash of
the key to the provider using an anonymizing network.
It also produces and sends a proof 7 that she knows
the key K and that encrypted data match the output of
operation EvalUtility. The provider checks the proof and
if the proof verifies, it posts a transaction to the Bitcoin
network that pays wval bitcoins to whoever presents a
key K that matches the hash value sent before. This is
the only place where an actual bitcoin transaction takes
place. The algorithm returns T if all operations succeed,
L otherwise.

Our data transfer and payment scheme DT PS is the
collection of the functions defined above and is de-
noted as DTPS = {Setup,UGen, UPGen, Register,
EvalUtility, VfyUtility, RedeemData}.

C. Security model and assumptions

We propose a protocol to ensure meter privacy when meters
report measurements to the /P. We incorporate the use of
bitcoin payments by the P as the means to reward those
users who share details about their energy consumption. This
process should not leak any information about the identity of
the meters/users and should not be used in any way by the
U'P to track users or profile them. Hence our protocol should
guarantee the following properties.

o Legitimacy. Bitcoins can be collected only by owners of
legitimate meters. Only authorized users should be able
to submit detailed energy consumption data, however in
a privacy-preserving manner. The utility provider should
be able to verify the origin of this data as coming from a
legitimate smart meter/owner. Thus payments may only
be created in the name of and used by legitimate users.

e Balance. The value of the data to be redeemed must be
balanced with the payment amount. This property is com-
posed of two sub-properties, user balance and provider
balance. Provider balance ensures that a malicious user
cannot claim more money than the value of the data
whereas user balance ensures that a malicious provider
cannot pay less than the data’s worth. This property
captures the fairness aspect of the protocol and builds
upon the atomicity (all-or-nothing) character of bitcoin
transactions (Section III-D).

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

o Unlinkability and context privacy. An adversary cannot
tell whether two data transfer and payment operations
come from the same user even if the adversary obtains
the views of these operations. Thus, payments should be
unlinkable to each other and user transactions (apart from
initial registration) should not reveal any information
about the user or the meter.

e No reliance on Trusted Third Parties. Reliance on third
parties requires trust in their honesty and competence.
All our protocols involve only the users and the utility
provider thus eliminating the possibility of collusion
attacks. The payment mechanism takes advantage of the
blockchain ledger as a distributed trusted entity that
allows the two entities to perform data exchange and
rewarding in a fair way.

While the data transfer and payment mechanism may be
privacy preserving, other sources of information can be used
to break user privacy. One such side channel is the IP address
of a user; if this is visible in any phase of the protocol, it can
be linked to the ID of the user during data redemption, hence,
anonymity is lost. Thus, we require that any message trans-
mitted to the UP is sent through an anonymous connection.

1) Provider Security Definitions: In the provider security
experiments, we formalize an adversary A who plays the role
of the user but may behave dishonestly and not follow the
corresponding protocols. A may concurrently interact with an
honest provider P an arbitrary number of times. In order
to formalize this adversarial setting, we define a number of
oracles the adversary may query:

o Reg(l{) lets A initiate the Register protocol with an
honest U/ P provided that there is no pending or successful
Reg call for U/ yet. Following a successful query, A will
hold a certified ephemeral key pair (pky,, sky;, Certy).

o Redeem(lf) lets A initiate the RedeemData protocol
with an honest U/ P.

Now we consider adversarial goals against the two proper-
ties, namely legitimacy and provider balance. A third property,
double-rewarding, where a user tries to redeem the same data
twice is not considered part of the threat model of DPTS
since DPTS emphasizes more on the actual transfer and
rewarding parts. However in the Discussion section we also
explain how this attack can be prevented by assuming slightly
more enhanced functionalities from smart meters.

The property of Legitimacy (Le), defined in Definition 1,
is used to model adversaries who may succeed in holding a
valid ephemeral key which is not signed by ¢/ P, or in making
a successful interaction of redeeming some data which are not
bound with any U that was an input to a successful Reg call.

Definition 1: (Legitimacy) The data transfer and payment
scheme holds the property of Legitimacy if for any PPT
adversary A in the experiment Exp'¢(k) from Figure 2 the
advantage of A defined below is negligible in k.

AdviE(k) := PrExps(k) = 1]

The Provider Balance property (PBa), defined in Defini-
tion 2, is used to model adversaries who want to gain more

http://dx.doi.org/10.1109/JI0T.2020.2990666

Experiment Exp'¢(k):
CRS <+ Setup(1%)
(pkl/h Sku) — UGen(CRS)
(pk’z,[p, Sk’up) — UPGen(CRS)
(pks,, sks;, Certy) < Register(U,UP)
b« AF{eg, Redeem (pka,pkup)
The experiment returns 1 iff
1) A holds a valid (i.e. certified) key pair (pk;,, skf;)
that is not an output from any Reg query; or
2) A makes a successful call to Redeem query such
that the honest U P is convinced that the call involves
a valid public-key pk;, for which there has not been
a successful execution of Reg up to this call.

Fig. 2. Legitimacy experiment.

Experiment Exp5®?(k):

CRS « Setup(1¥)

(pkup, skyp) < UPGen(CRS)
b «— AReg, Redeem(pk,up)

The experiment returns 1 iff

1) A managed to extract a valid authorization credential
(pkfy, skf;) which can spend it by signing a new
bitcoin transaction using sk;;; or

2) A claims a payment that does not equal the value of
previously submitted data with pky,.

Fig. 3. Provider balance experiment.

than they actually deserve for the data they submitted to the
provider. This property ensures that the amount redeemed by
a user never exceeds the value of the data as captured by
function Util().

Definition 2: (Provider Balance) The data transfer and
payment scheme holds the provider balance property if for any
PPT adversary A in the experiment Exp"£2(k) from Figure 3
the advantage of .4 defined below is negligible in k:

AdvFiE2 (k) := Pr[ExphP (k) = 1]

2) User Security Definitions: In the user security defini-
tions, we consider an adversarial utility provider .4 against
two properties, namely user balance and user privacy. The
adversary A will make use of the following oracle queries:

e Sys(UUP) lets A initiate the system setup process and
outputs the system parameters CRS and a public-private
key pair for &/ P, who is controlled by .A.

o RegU() lets A create a new user U with a Register
protocol running between A and U/, and after a successful
query A will obtain U’s public key pk;, along with the
transaction record from these two protocols.

o CorU() lets A interfere (corrupt) an honest user ¢ and
obtain U’s secret key sky,.

o RedeemP(f) lets A initiate the EvalUtility and Re-
deemData protocols with an honest ¢/ and input {m;}
of A’s choice.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

o RedeemP*(U{) lets A initiate the EvalUtility and Re-
deemData protocols with an honest uncorrupted U
where the messages are randomly selected between either
{m?} or {m}}, both chosen by A.

o Challenge(Uy, ;) lets A initiate a RedeemData proto-
col by suggesting two honest users U and U/, that have
not been corrupted by A. The protocol is run between
Uy for b = {0,1} and A, where A acts as the provider
U P making RegU and RedeemP queries for these two
users.

We first consider the user balance property, used to model
adversarial providers that desire to pay less than the value of
the honest user’s submitted data. This is formalised using an
indistinguishability-based game where the adversarial provider
has access to oracles that register and redeem payments with
users. When the querying phase ends, the adversary will
choose two challenge message sets {m?} and {m}} and the
user will randomly choose to redeem one of them. Note that
challenge messages must have equal total utility otherwise the
adversary could trivially distinguish which one was chosen
using VfyUltility. The adversary wins the game if it can extract
the signing key of the user, submit a payment that does not
match the utility of the submitted messages, or is able to
distinguish between the two sets of messages, which would
imply that the adversary has learned some information about
the messages even before payment (e.g. the first few bits of
the messages).

Definition 3: (User Balance) The data transfer and pay-
ment scheme holds the user balance property if for any PPT
adversary A in the experiment ExpY??(k) from Figure 4 the
advantage of A is defined by:

AdviP? (k) := Pr[Expo®e(k) = 1] = 1/2 + ¢
where € is negligible in k.

The second property related to user security that we consider
is user privacy, in which the adversarial provider seeks to
identify a user trying to submit data and receive payments.
With the exception of the registration phase, the data transfer
and payment scheme should not leak any user-sensitive infor-
mation. In short, users should have the privacy guarantee that
protocol interactions are unlinkable to each other and cannot
be used for tracking an honest user.

The property of User Privacy (Priv), defined in Definition 4,
is formalised by the indistinguishability game shown in Figure
5. Initially, the adversary asks an arbitrary number of users
to register and optionally redeem some data with bitcoin
payments. Once this learning phase is over, 4 initiates a
Challenge phase with two users Uy and U; at A’s choice,
in which a user U, from these two is selected according to a
random bit b unknown to A and asked to redeem data {m,}.
Then, A outputs the b’ value. The scheme will be privacy-
preserving if the adversary is unable to identify the bit b
(i.e., ¥ = b) with probability better than random guessing.
Intuitively, the adversary should not be able to link users to
the payments they received under the condition that all other
actions (registration, redeem, etc.) are controlled by A.

http://dx.doi.org/10.1109/JI0T.2020.2990666

Experiment ExpY%2(k):

CRS « Setup(1¥)
b (0,1}
(pk’z/[p, Sk’z,m:) — ASyS<1k)
(U*, {mg}, {mzl}) — ARegU, CorU, RedeemP(pkup)
such that Y-, Util(mY) = Y, Util(m})
transRecord(U/*) < ARedeemP gz 1101 I i)
The experiment returns 1 iff
1) A managed to extract a valid credential (pk;,, sk;;)
which can then use to refund back its payment by
signing a new bitcoin transaction using skg;; or
2) A submits a payment that does not equal the value of
the data submitted by U/*; or
3) A outputs b’ = b.

Fig. 4. User balance experiment.

Experiment Exp"(k):

CRS <+ Setup(1%)
b+ ASys, RegU, CorU, RedeemP, ChaIIenge(lk)
The experiment returns 1 iff .4 passes the following phases:

o Setup phase: (pkyp, skyp) — ASYS(1F)
o Learning phase:

transRecord «— ARegU, CorU, RedeemP(pkuP)
o Challenge phase:

transRecord(U4,) « AChalenge 74, 74,)

Finally, A outputs U, that is equal to U.

Fig. 5. Privacy experiment.

Definition 4: (Privacy) The data transfer and payment
scheme holds the property of meter privacy if for any PPT
adversary A in the experiment Expi{i"(k) from Figure 5 the
advantage of A is defined by

AdViY (k) == PrExpi™ (k) = 1] =1/2 + ¢

where ¢ is negligible in k.

D. Tools

Throughout this work, we say that a function €(.) is negligi-
ble (denoted negl), if €(x) < £~ ¢ for all ¢ > 0 and sufficiently
large k.

1) Digital signatures: A digital signature scheme consists
of a tuple of probabilistic polynomial time (PPT) algorithms
(Keygen, Sig, SigVerify) defined as follows:

« Keygen(1¥): a PPT algorithm that, on input the security
parameter x, outputs a key pair (pk, sk) where sk is the
signing key and pk is the signature verification key.

o Sig(sk, m): a PPT algorithm that, on input a signing key
sk and a message m, returns a signature o. We write
Sig;,(m) to denote the signing of m using the secret key
sky of U.

o SigVerify(pk,m,o): an algorithm that, on input a veri-
fication key pk, message m and a signature o, outputs
either True or False. We write SigVerify,,(m,o) to

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

denote the verification of (m,o) using the public key
pk‘u of U.
The correctness and security properties are informally sum-
marized below:

e Completeness. With overwhelming probability, for any
message m and signature o < Sig(sk,m), it holds
that SigVerify(pk,m,o) = True, where (pk,sk) <«
Keygen(17).

o Unforgeability. Let A be a polynomial-time attacker
that adaptively chooses ¢ = poly(x) distinct messages
maq,...,m; and obtains signatures o; = Sig(sk, m;) for
all ¢ € [t]. Then with only negligible probability can
A forge a new message-signature (m*,o*) such that
m* # m; and SigVerify(pk, m*, o*) = True.

2) Blind signatures: A blind signature scheme [21] is a
digital signature scheme where the Sig algorithm is replaced
with the following:

» BSig(pk, sk, m): an interactive protocol between a PPT
signer S(sk) with a signing key sk and a PPT verifier
V(pk, m) with a verification key vk and a message m.
The output is a signature o. For simplicity of notation,
when it is clear from context, pk is omitted from the set
of inputs.

Furthermore, blind signatures should also possess the follow-
ing security property (in addition to unforgeability):

e Blindness. Let A be a polynomial-time adversarial
signer A that interacts with an honest verifier in BSig.
Furthermore, let o, <+ BSig(sk,mp) and o1_p <
BSig(sk, mi_p) be the outputs of two different interac-

tions of A with the honest verifier where b <- {0,1} and
(mg,my) are chosen by A. Then A(cg,01) can guess b
with probability at most 1/2 + negl(k).
In this work, we will implement the standard RSA-based
blind signature [21] within our protocol, which is described in
more detail in Section IV-A and was proven to possess both
blindness and unforgeability in the random oracle model.

3) Pedersen commitments: A commitment scheme is a pair
of algorithms (Commit, Open) typically executed between a
committer and a receiver. In the commitment phase, the com-
mitter uses algorithm Commit, which takes as input a message
m and auxiliary information (an unpredictable random num-
ber) r,,, to produce a commitment ¢,, = Commit(m,r,,).
In the opening phase, it sends (m, r,,) to the receiver which
checks whether the opening algorithm Open(c,,, m,r,,) re-
turns Accept. A commitment scheme is secure if it is binding
and hiding. The “hiding” property ensures that the receiver has
no information about m before the opening phase, while the
“binding” property ensures that, once committed, a malicious
committer cannot find values m’ # m and r’ such that
Open(cp,, m',r'") = Accept.

We will be using the Pedersen commitment scheme [22]. To
commit to a message m using randomizer r,,, we compute
¢m = Commit(m,r,,) = g™h"™™ where g, h are generators
of G. To open the commitment, we reveal (m,r,,) and check
whether g™h"™™ =" ¢,,. A useful property of this commitment
scheme is that it is homomorphic: for all (m,r) and (m/,r")

http://dx.doi.org/10.1109/JI0T.2020.2990666

we have Commit(m,r) x Commit(m/, ') = Commit(m +
m',r+1').

4) QAPs and zkSNARKs: We will base our constructions
on a class of zero-knowledge Succinct Non-interactive ARgu-
ments of Knowledge (zkSNARKs) that was introduced in [23].
Such arguments can be used to prove NP statements about
Quadratics Arithmetic Programs (QAPs) without revealing
anything about the corresponding witnesses. After taking a
QAP @ as input, a trusted party conducts a one-time setup
that results in two public keys: an evaluation key 'K and an
verification key E'V. The evaluation key allows an untrusted
prover to produce a proof 7 regarding the validity of the QAP
NP statement. The non-interactive proof is a zero knowledge
proof of knowledge, thus anyone can use the verification key
to verify the proof 7. In our setting, the use of zkSNARKs will
be used to guarantee that data to be released by the user have
certain properties.

A zkSNARK for a QAP @ is a triple of algorithms
(KeyGen, Prove, Verify):

o KeyGen(Q,1%) — (EKqg,VKg). On input a security
parameter 1% and a QAP (@, this function produces a
public evaluation key K¢ and a public verification key
VKg.

o Prove(EKg,z,w) — mg. On input a public evaluation
key EKq, a x € Lg, where L¢ is the NP decision lan-
guage defined by the QAP, and a corresponding witness
w, this function produces a proof m¢ that w is a valid
witness for x.

o Verify(VKqg,z,mg) — {L, T}. On input a public verifi-
cation key V K, = and a proof 7, this function outputs
T if it is convinced that x € Lg and L otherwise.

The properties expected by zkSNARKs are informally summa-
rized below:

o Completeness. Given (z,w) € Rg, where R is the NP
relation for the language Lg, the prover P can produce
a proof 7 such that the verifier V' accepts (z,7) with
probability 1.

o Soundness. No polynomial-time adversary can generate a
proof 7 for x € Lg that fools the verifier V' to accept
(z,7).

o Zero-knowledge. There exists a (randomized) polynomial
simulator S, such that for any x € Lg, S(x) generates
a proof that is computationally indistinguishable from a
honestly generated one.

We say a zkSNARK is secure if all the above properties hold.

On trusted setup and CRS: While standard zkSNARKs as
defined here require a trusted party to generate the common
reference string (CRS) for the generation and the verification
of the proofs, a malicious party can provide a CRS that
allows it to break the ZK property and learn information about
the user’s data. This attack can be prevented by extending
SNARKs to be “subversion-resilient” [24], [25], [26], which
would ensure that the ZK property is preserved even under
maliciously chosen CRS. Note, however, that only standard
knowledge soundness is guaranteed (i.e. not security against
malicious provers) but this is sufficient to ensure soundness

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

and ZK security if the verifier is responsible for generating
and distributing the CRS. Other alternatives to this approach
include building NIZKs in the random oracle model (using the
Fiat-Shamir transform [27]), and constructing the CRS using a
multiparty computation (MPC) protocol initiated between the
prover and verifier [28] which preserves soundness if at least
one party is honest.

5) Bitcoin transactions: We assume limited familiarity with
Bitcoin and blockchains, for more information the reader is
referred to [29]. A blockchain is a linked-list data structure in
which data is organized as blocks, and blocks are connected
together through hash pointers (pointer to the hash value
of the previous block) to form a chain. Maintaining a hash
pointer instead of a simple pointer turns the blockchain into
an append-only data structure. The process of extending the
blockchain is called mining. Miners compete against each
other to extend the blockchain with new blocks containing
valid Bitcoin transactions.

The Bitcoin system consists of addresses and transactions
that send/receive money to these addresses. An address is
simply the hash of a public key. To transfer bitcoins from
one address to another, a transaction must be created with one
or more input addresses from which the money will be taken
and one or more output addresses to which the money will
be sent. Each input must contain a proof of fulfillment of the
established conditions of the output it tries to redeem from.
Both conditions and proofs are coded using Script, a simple
stack-based language with no loops. In order to validate a
transaction, the full script is executed by concatenating both
locking and unlocking conditions.

The most common transaction within Bitcoin is the standard
Pay-To-Public-Key-Hash where a digital signature is needed to
redeem the transaction; the output specifies an address and in
order to spend this output, one must sign with the associated
private key. The script of this transaction is shown below:

ScriptPubKey: OP_DUP OP_HASH160 <pubKeyHash>
OP_EQUALVERIFY OP_CHECKSIG
ScriptSig: <sig><pubKey>

A more advanced transaction that was not originally in-
cluded in the Bitcoin scripting language is Pay-to-Script-Hash
(P2SH) which is shown below:

ScriptPubKey: OP_HASH160 <redeemScriptHash>
OP_EQUAL
ScriptSig: <sig><pubKey><redeemScript>

To redeem an output sent to a P2SH address, one must
specify a script that hashes to this address, and then meet
the conditions specified in the script. We will be using this
transaction to trade meter data with bitcoins of appropriate
value. At a high level, the owner of the meter will sent offchain
the encrypted data along with a hash of the key used to encrypt
the data. The provider will include the hash of the key in a
P2HS transaction which will be traded with bitcoins when the
user releases the key used to encrypt the data. However, before
posting the transaction, the provider must be convinced about
the validity of the data. The details of the validation procedure

http://dx.doi.org/10.1109/JI0T.2020.2990666

and the message exchanges which occur offchain is the main
part of this work and will be described in the next section.

Finally, to ensure that the bitcoins of the provider are
not locked forever if the user does not release the un-
locking key, the provider can make the transaction a time-
locked one by using the CheckLockTimeVerify or
CheckSequenceVerify opcodes. In a time-locked trans-
action, outputs require a certain time in the future to be
reached in order to be redeemed. Using the previous two
opcodes, spending time can be absolute (i.e. a specific future
date) or relative to the time the transaction was posted in the
blockchain, respectively. An example of relative time lock (10
days) is shown below:

ScriptPubKey: <10d> OP_CHECKLOCKTIMEVERIFY
OP_DROP
ScriptSig: <sig>

In the sections that follow we describe our protocols for
reporting and rewarding in the smart grid through the use of
bitcoin transactions. Our goal would be to ensure the security
and privacy of these transactions against both external (any
entity eavesdropping on data communications) and internal
attackers (P and perhaps other smart meters) that may have
access to more detailed transaction data.

IV. DETAILED DESCRIPTION OF DPTS

Consider a user 4 who is the owner of a meter M. The
user has detailed electricity data m worthy of value v that is
of interest to a provider P. U would like to exchange the
data in a fair way with bitcoins of value v. For this reason the
blockchain can be used as a trusted entity in the place of a
judge in a fair exchange protocol.

The protocol consists of two phases. In the offchain one,
the user produces a proof of validity that meter data has value
v based on some pre-agreed utility function Util(). Since
the data m need to be kept private at this point, they are
encrypted under a key K known only to the user. Hence the
user must convince /P that the encrypted data is of value v.
Since the latter is basically an NP statement, it can be proven
in zero knowledge. Hence the most important issue is how
to efficiently implement this ZK proof in a non-interactive
manner. Once the proof 7 is constructed, the user sends to
the UP the proof , the encrypted data and a hash hx of the
encryption key K.

When the UP verifies the proof, the onchain phase begins;
U'P posts a transaction to the blockchain that says

“Transfer v bitcoins to the user who presents a pre-
image of hx within time 7" and signs the transaction
with private key sky.”

Then the user posts a transaction that says

“Here is K that satisfies H(K) = hx. Transfer the
v bitcoins to my address.”

Notice that none of the parties can cheat the other. The UP
is sure that nobody can claim the money unless they present
a key K that matches the key used to encrypt the data in the
proof 7. If this does not happen within time 7', the /P can get
back the v bitcoins (recall time-locked transactions). Without

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

this refund condition, in the event that I/ decides to abort the
protocol, U{P’s money would be locked forever.

Similarly, the user can claim the money by signing the
transaction that publishes K with the private key sky,, which
in turn will allow UP to recover the encrypted meter data
m. Note that UP’s transaction requires that ¢/ provides both
the pre-image K as well as a signature. This is to prevent an
attack in which U/ broadcasts K to the network and a malicious
miner (or any other party) sees K and uses it to claim UP’s
funds. To prevent this attack, the transaction requires U’s
signature, which nobody else can produce. However to ensure
unlinkability and prevent the UP associating the signing key
with multiple submissions of data from ¢/, this key has to be
an anonymous and ephemeral (yet authorized) key as will be
explained in Section IV-A.

The above approach makes the combined transaction
“atomic” in the sense that payment and delivery of data take
place at the same time. Thus, if any of the entities leaves the
protocol and does not complete its part, no losses incur. More
specifically, this atomic exchange ensures that fairness holds
(see [13], [14] for similar assumptions). Hence we will build
upon this to ensure the stronger guarantees offered by our
Balance property (Definition 2). Finally, only one blockchain
transaction is needed to exchange the data with bitcoins while
the majority of the protocol takes place offchain. This greatly
contributes to the efficiency of the whole process. In the
remaining of this paper, we mostly focus on the offchain part
of the protocol.

A. Initialization and Registration

In what follows, we assume that the owner I/ of a smart
meter M has a public-private keypair (pky, skys). The public
key is registered with the provider along with substantial
evidence (e.g. electricity bill, civil ID) that ¢/ is a valid owner.
Thus when the provider sees a message signed with sk, he
knows it is coming from a legitimate user. This long term
key-pair will be used to establish ephemeral, one-time keys
(pkg,, skf;) to ensure the unlinkability between reported data
and rewards.

Essentially, the hash of pk;, will correspond to a bitcoin
address which will be used with the AP to reward the meter
with bitcoins corresponding to the data provided. This one-
time key can also be thought as an authorization credential that
allows only authorized meters to subsequently submit detailed
consumption reports in a privacy-respecting manner, without
the need for additional, explicit authentication. This key will
be updated with every new data reported, thus also providing
for unlinkability between rewards.

A description of the initialization phase is shown in Al-
gorithm 1. For simplicity we assume the provider possesses
an RSA key pair, although any blind signature scheme can be
used instead. So, let N;p be an RSA modulus and (eyp, dyp)
be the public/private key pair of the provider. To obtain a blind
signature from UP, the meter first asks the utility provider to
sign a blinded version of a new bitcoin address h. (Steps
1-3). The utility provider first checks the authenticity of U’s
signature and verifies it is coming from a legitimate user (Step

http://dx.doi.org/10.1109/JI0T.2020.2990666

4-7). This is possible since UP is aware of the public keys of
all valid owners. Then UP signs the blinded version of A, and
gives it back to the user which removes the blinding factor r,
thus obtaining the provider’s signature on h. (Step 8). At this
point the user can submit consumption data later on.

Algorithm 1 Register: Executed between meter I/ and UP to
generate ephemeral keys certified by UP

Output: The hash of ephemeral public key pk;, signed by the
UP and known only to U.

1: U generates a fresh key pair (pk;,, sk;,) and sets h, =
Hash(pks,) as the bitcoin address corresponding to pky;.
2: U blinds h. by computing h* = r*?h, mod Nyp,
where 7 is a fresh random number.
: U — UP : h* and Sig,,(h*).
. if SigVerify,,»(h*, Sig,,(h*)) = False then

UP aborts > Bad Signature
else
UP — U : o* = Sigyp(h*) = (h*)%? mod Nyp

: U computes o = r~lo*

signature on h..

mod Nyp and recovers UP’s

In the end of this protocol, the user is equipped with
an authorized ephemeral public key pk;, and a certificate
Cert(he) bearing the signature of /P on the hash of pk;,.
Although at the moment of signing the utility provider is not
aware of the value pk{, (or its hash h.), when presented with
such a bitcoin address during the data reporting phase it will
be convinced it is coming from an authorized user. Hence this
method provides for a way to certify ephemeral bitcoin public
keys/addresses.

Notice that this protocol needs to be executed when the
meter has to register for the first time or when the meter needs
to obtain a new ephemeral key. However, subsequent keys can
easily be obtained by piggypagging this process with the data
reporting phase as explained in Section IV-D.

B. Commitment of data and Utility evaluation

The goal of this phase is for the user to convince the
utility provider that has measurements to be reported, however
without revealing these first. On the other hand, /P must be
sure that this data worths some value wal under the utility
function Util(). The use of commitments will help us realize
these two requirements. Then these consumption data need to
be exchanged with bitcoins of value equal to val in fair and
trustworthy manner.

Let mq,...,m, be the measurements to be reported to
the UP. For each measurement, the user evaluates Util()
on input m,; to get a value v; = a; - m; + ag, along with
commitments ¢; to the measurements (here we exemplify the
construction using a linear utility function, however other
more complicated functions can be supported as well). The
user adds these values to obtain the total value v = >, v;. This
is detailed in Algorithm 2. The output of this algorithm is a
message ({c; },val, ryq1), signed with the user’s ephemeral key
skg;. The commitments c; will be used by the utility provider

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

(or any other third party) to verify the value of the data as
explained below.

Algorithm 2 Evaluate utility and commit to measurements:
Executed by U

Input: Util() function and measurements m; to be reported
to the UP. Generators g,h used in commitment scheme.
Ephemeral signing key skg,.

Output: Signed message consisting of total value and com-
mitments to data.

1: for all measurements m; do

2 v; < ay - m; + ag > Value of data m;
3 Ti <R {0, l}lc

4: ¢; <+ Commit(m;,r;) = g™ h"

5: end for

6: val <= Y, v; > Total value for all data
7 Tpal < Q1 - Zl r; > Auxiliary information to be used in
verifying commitment to total value

o Sigska({ci},val, Twal)

9: Return ({c;},val,ryq,0)

*®

The signed message ({c;},val,r,q) will be sent to UP
offchain (i.e. not using the blockchain network), so that UP
knows that a user has to report data worthy of value wal.
Now UP has to be convinced about the validity of the
commitments and the value of the data. This is achieved using
VfyUtility ({¢; }, val, rya1, o), which is outlined in Algorithm 3.

Algorithm 3 Verify utility: Executed by UP
Input: Util() function, ({c;}, val, ryqa;), signature o and cer-
tified public key (pkf,, Cert(he)).
Output: ‘Accept’ or ‘Not Accept’ depending on the validity
of data.
1. if SigVerify(H (pk;,), Cert(h.)) = False then
2: UP aborts > Invalid Cert(h.). Key signature not
verified by UP
3. if SigVerify(({c;},val, 7ya1),0) = False then
4: UP aborts > Bad user signature
5: Return Open(II;(ci* x g*°),val, rya1)

If Algorithm 3 returns ‘Accept’, P is convinced about
the value of the data reported by the user. To see why, let
Cy, = €t x g0 = gt mitaparTm; and ¢,q, = I;c,,. By
substitution,

Coal = gzi(al-mi+ao)hfl1 ST — i SATIR (1)

where val =)",(a1 - m; + ag) and 7,4 = a1 - Y, ;. Hence
Cyal 1s @ valid commitment on the pair (val,r,4;) and Open
in Line 5 will return ‘Accept’.

C. Getting paid for the data

In this last phase, the Redeem protocol is executed between
the user and the UP. First, the data m; are encrypted with
a fresh, one-time symmetric key K chosen by the user to
produce a ciphertext C' = Ex({m;}). Then C is encrypted
with the provider’s public key to produce Encyp(C). This

http://dx.doi.org/10.1109/JI0T.2020.2990666

double encryption is needed to prevent others from accessing
the data in C, once the key K is released to the blockchain.
Then both Encyp(C) and the hash hy of K are sent to the
UP through an anonymizing network along with a proof
that proves knowledge of K and that data m; match the data
in the commitments ¢; (output of operation EvalUtility).

So, given UP’s knowledge of (C, hi,{c;}), the user must

prove in ZK that it knows (mq,...,my, 1,..., 7, K) such
that:
1) H(K) =" hg and K was used for the encryption of the
data m;
2) ¢ =" gmh
More formally, if we let U := U, 4,(m) = a1m + ag be

the linear utility function, we define the NP language Ly
for the zkSNARK-proof system as a set of the following NP
statements:

3 {mi};‘b:la{ri}lqrib:hK:
hK = H(K)7

C = Ex({mi})

Vi e [n}7ci _ gmihm‘

Ly =1 {(Chg,{c:})

If the above zkSNARK-proof 7 is correct, UP is convinced
about the value of the committed data. It can now post
a transaction to the Bitcoin network that pays val bitcoins
to whoever presents a key K that matches the hash value
sent before. This is the only place where an actual bitcoin
transaction takes place.

This last part ensures the fair transfer of the data m,; (actu-
ally the key K that decrypts the ciphertext C) with bitcoins
of value val. This is straightforward and can be implemented
using hash-locked transactions and time commitments (Section
III-DS5), once the zkSNARK is implemented successfully. The
implementation of 7 is described in Section V-B. Operation
Redeem is outlined in Algorithm 4.

Algorithm 4 Redeem: Executed between U and UP
U
1: C = Exg({m;}), where E() is a secure block cipher and
K a fresh symmetric encryption key.
2: Create proof .
32 U - UP: Encyp(C),H(K),w
UPp:
4 if L« ViyUtility({c;}, val, ryar, o, (pks;, Cert(he)))
then
5 UP aborts > Utility value does not verify
6: if L < Verify(CRS,C,hk,{c;},7) then
7: UP aborts > Bad zkSNARK proof
8
9

. else

UP posts time-locked transaction T;p to transfer val
bitcoins to user who presents K

U:

10: if T7,p not posted or posted with incorrect val then

11: U aborts

12: else

13: U posts transaction 7y, to release K and get credit of

val bitcoins

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

A summary of the information exchanged between the user
and the UP is shown in Figure 6. As it can be seen in the
figure, only one message needs to be sent from the user to the
UP contributing to the efficieny of the protocol.

D. Obtaining a new ephemeral key

We mentioned in the registration phase that the ephemeral
key is blindly signed by the /P. Hence the first key of the user
U is authenticated but the provider cannot link it to the user’s
ID. As it is important for different data submissions/payments
to remain unlinkable, once this key has been used to receive
a payment, it should not be used again.

One way to do this is to have the provider blindly sign more
than one key during registration. Thus, instead of ¢/ sending
just one blind hash value (Line 3 of Algorithm 1), the user may
send a collection {hj,h3,...} of them that can individually
be signed by the /P. After unblinding those, &/ will have a
collection of keys to be used in subsequent interactions with
the UP.

If the provider is not willing to sign a collection of such
keys, a new ephemeral key can be piggybacked on Message
1 of Figure 6 as follows. The user picks a new ephemeral
key pke, computes its hash k. and sends a blinded version
7' her, signed with the previous ephemeral key, along with
the rest of the components in the message (recall signature
0). The provider knows this is coming from an authenticated
user but cannot tell which one due to the security of the blind
signature. Once the provider signs r'¢? h, with its RSA key,
the user can remove the blinding factor and obtain a new
ephemeral key to be used for the next submission of data.
This way, a series of signed keys can be generated on the fly
which are all unlinkable to each other.

E. Other utility functions

The case for linear utilities can be extended to piecewise
linear functions defined over various intervals. For example,
if the data m falls in the range [l;,7;), the utility might given
by some linear function a’(m) + a defined in this specific
interval. Further generalizations are possible by considering
polynomial utilities that can be used to express arbitrary
functions as general splines over intervals, at the expense of
a more complex commitment scheme and ZK proof.

In the following we will demonstrate how arbitrary com-
putable utilities can be incorporated in the scheme. Since
homomorphism in the commitment cannot be exploited any
more, Pedersen commitments will be replaced with simpler
hash commitments. Additionally, VfyUtility (Algorithm 3) de-
generates to just checking the signatures on the data and the
ephemeral key (lines 1-4). Verification of the commitment will
have to be pushed inside the ZK proof. The updated version
of EvalUtility is highlighted in Algorithm 5.

Operation Redeem stays the same. First the data m, are
encrypted with an one-time key K to produce a ciphertext
C = E({m;}). Then the hash of the key and Encyp(C) are
sent offchain to the UP along with a new proof m showing
that data match the data in the commitment com and that the
utility function was correctly applied. The new zkSNARK proof

http://dx.doi.org/10.1109/JI0T.2020.2990666

Algorithm 5 Evaluate utility and commit to measurements -
updated: Executed by U

Input: Util() function and measurements m; to be reported to
the UP. Secure hash function . Certified ephemeral signing
key skj,.

Output: Signed message consisting of total value and com-
mitment to data.

1: for all measurements m; do

2 v; < Util(m;) > Value of data m;
3. r4p {0, 1}lG

4 com < H(my,...,mp,T) > Commitment to data
s:val <=, v; > Total value for all data
6: 0 Sigsk& (com,val)

7: Return {(com,val, o)

is using information (C, hx,com,val) to show that the user
knows my, ..., m,, K,r such that:

1) H(K) =" hx and K was used for the encryption of the

data m;

2) com =" H(my,...,my,7)

3) val =" 3, Util(m;)

More formally, if we let Uy be an arbitrary utility function,
we define the NP language Ly, for the zkSNARK-proof
system as a set of the following NP statements:

I{m; 0y, K

hx = H(K)
C=Ex({mi})

com = H(myq,...,mp, 1)
val =), Un(m;)

Luy = 4 (C, hg,com,val)

V. SECURITY ANALYSIS AND PERFORMANCE

In this section we analyze the security, privacy and effi-
ciency aspects of DPTS.

A. System security

In this section, we prove that the DPTS scheme satisfies
the three properties of legitimacy, balance, and privacy as per
the definitions of system security introduced in Section III-C.

a) Legitimacy: We start by providing an intuition behind
why the legitimacy property holds. Recall that by Definition 1,
the adversary .4 can win the legitimacy game in two cases:

1) A holds a certified ephemeral key that is not an output

from any Reg query which models the Register pro-
tocol. In this protocol, the provider /P authenticates
the user & and then signs the blinded ephemeral key. .4
holding a valid ephemeral key without calling the Reg
query means that A can either demonstrate to U/ P that
A is the owner of a signed blinded ephemeral key i.e.,
knowing the secret key of I/, or simply forge a certificate
without the involvement of I/ P. Both conditions contra-
dict the assumption that the signature schemes used in
our proposed scheme are unforgeable.

2) A makes a successful call to Redeem query such that

the honest U P is convinced that the call involves a valid
ephemeral key for which there has not been a successful

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

User U

http://dx.doi.org/10.1109/JI0T.2020.2990666

Utility Provider /P

Data submission and evaluation (offchain)

Measurements mq,ms, ..., My,
({ei},val, ryqr) < EvalUtility (U4, {m;})
o+ Slgska ({ci}, val, rypar)

{Ci}7 Ual7 Tval, 0, pkf{, Cert(hc)

ANON

Pick new symmetric key K
Set C = Ex({m;}) and hx = H(K)
Create zkSNARK proof m

ViyUtility({c}i, val, ryar, 0, pkf;, Cert(he))

1b: ETLCMP (C), h,K, ™

Verify proof 7

ANON

Blockchain transactions

If T4p posted correctly,
post transaction 1,

If both tests succeed,
post transaction 1y,p

Fig. 6. Data submission, evaluation and blockchain transactions. Steps la and 1b are shown separately for presentation clarity, but they can be merged into

one message.

execution of Reg up to this call. The Redeem query
models the RedeemData protocol which makes use of
the VfyUltility algorithm. Can A pass the Redeem call
without knowing the private ephemeral credential? The
answer is no since otherwise a contradiction occurs due
to the fact that the signing algorithms are secure.

We now state the theorem that will formally prove the above
intuition.

Theorem 1: (Legitimacy) If the signature scheme used

to create the ephemeral keys is unforgeable, the proposed
DPTS scheme satisfies the legitimacy property as defined
in Definition 1.
Proof Let A be an adversary in the legitimacy experiment
Exp . Let Bad't A1 be the event that Case 1 happens, that is A
manages to obtain a valid ephemeral key pair that was not an
output of any Reg query. Let Bad Ao be the event that Case 2
happens, that is A manages to successfully redeem data from
UP through a Redeem call and using an ephemeral key pair
(pke, sk¢) that was not an output of any previous Reg query.
Then, for any security parameter x, we have the following:

Adv' (k) < Pr[Bad'f, v Bad'f,]

We will now show that, if either these bad events happen,
then we can break the unforgeability of the underlying sig-
nature scheme. Let A be an adversary that can make either
of these bad events happen. Then there exists an adversary
B that uses A to break the unforgeability of the underlying
signature scheme. The adversary B works as follows: B, as
an adversary in the unforgeability game, first receives as
input the verification keys (pkf;, pkyp) from the challenger.
It then runs .ARegRedeem (pkg;, pkup), acting as the provider
for A while simulating Reg and Redeem queries. B simulates
Reg queries by generating a new key pair (pk¢, sk®) then
calling the signing oracle (of the unforgeability game) to get
Cert(he) < Sig(skyp, H(pk®)). B simulates Redeem queries

by verifying utilities and their signatures/proofs. Note that this
perfectly simulates the game for A.

If A recovers sky or forges Cert(h.) for the key
pair (pkf;,skf;) (ie. Badf, occurs) then B could use
(H(pks;),Cert(he)) as its forgery in the unforgeability
game to win. Furthermore, if A is successfully able to
pass verification when redeeming using forged credentials
(pkS, skg, Cert(h.)) that was not an output of some Reg query
(i.e. BadLe’2 occurs) then B could use (H (pkS), Cert(h.)) as

its forgery in the unforgeability game to win. Therefore:

Pr[B wins] > Pr[Bad'}; Vv Bad']

However, because the underlying signature scheme is secure,
that there exist a negligible function € such that:

Pr[B wins] < e
Thus,

Adv' (k) < Pr[Bad'f; v Bad'f,] < e

]

b) Provider Balance: We start by providing an intuition
behind why the provider balance property holds. Note that,
because the proposed scheme satisfies the legitimacy property,
the adversary cannot claim an unused authorization credential
(pkfy, skf;). Thus, by Definition 2, an adversary can win the
provider balance game in three cases.

1) The adversary observes the transaction posted with the
ephemeral public key and extracts the corresponding
private key sk;;. Now she can redeem the payment
by signing another bitcoin transaction. However, this is
infeasible due to the security of the underlying signature
scheme.

2) The adversary claims a value larger than the value of
the committed data. Again this is not possible due to

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

the binding property of the commitment scheme. Once
the data are committed, it is the provider who checks
the validity of their value. Hence it is not possible to
claim a different value than the one estimated through
the application of the utility function. To see why,
suppose that = (val, ryq;) and 2’ = (val’ ! a1) Where
val # val but gv@preal = gval pria, ThlS would
imply that z:i(almZ + ag) # > ;,(aim} + ap) and
ai) ;m # a1y, which indicates that there exists
at least one commitment ¢; = g™ h"7 = g ™5 RS that
can be opened up into two different messages m; # m;-,
breaking the binding property.

3) The adversary during the Redeem process produces
a proof of an invalid statement (i.e. encryptions of
undervalued messages) to convince the provider that
they are of larger value. However, this is not possible
due to the soundness of the zkSNARK.

We now state the theorem that will formally prove the above
intuition.

Theorem 2: (Provider Balance) If Theorem 1 holds, the

signature scheme is secure, the commitment scheme is bind-
ing, and the zkSNARK scheme is sound, the proposed DPTS
scheme satisfies the provider balance property as defined in
Definition 2.
Proof: Let A be an adversary in the provider balance exper-
iment Exp"°. Let Bad 87 be the event that Case i happens,
where i € {1,2,3}. Then for any security parameter xk we
have the following:

AdvF®? (k) < Pr[Bad’’] + Pr[Bad"3] + Pr[Bad %3]

Let A be an adversary that triggers the event Bad";.

Then there exists an adversary 5 that uses A4 to break
the unforgeability of the underlying signature scheme. The
adversary B works as follows: given a public key pk;; as input,
B would obtain (pkyp, skyp) < UPGen(CRS) then run
AReg, Redeem (1,1,) simulating A’s queries as the provider.
When A has created a new bitcoin transaction and forged a
signature under pk;,, B would submit this forgery to win the
game. Therefore:

Pr[B wins] > Pr[Bad ;]

However, since the signature scheme is secure, we have that
there exists a negligible function € such that:

Pr[Bad’;] < Pr[B wins] < e

Next, suppose that A triggers the event BadPBa Then there
exists an adversary B that uses A to break the computational
binding property of the underlying Pedersen commitment
scheme. The adversary B starts by obtaining (pkyp, skup) <
UPGen(CRS) then executing .ARe9 Redeem (1,) while sim-
ulating A’s queries and acting as the provider. Because event
Bad"3 occurs, during the course of simulating A’s Redeem
querles, A will output commitments {c¢;} that can be opened
into val or val’ < wal. Since it is unknown which of the
q = poly(k) queries to Redeem might cause this event to
happen, B would select one of the Redeem queries at random

http://dx.doi.org/10.1109/JI0T.2020.2990666

and submit the commitments to its challenger to win the game
with non-negligible probability 1/¢. Therefore:

Pr[B wins] > Pr[Bad’%]/q

However, since the commitment scheme is binding, we have
that there exists a negligible function e such that:

Pr [BadPBa] < Pr[Bwins] < q.e

Lastly, suppose that A triggers the event Bad’3. Then there
exists an adversary 3 that uses A to break the sound-
ness of the underlying zkSNARK. The adversary B starts by
obtaining (pkyp, skyp) < UPGen(CRS) then executing
AReg, Redeem (1,1,) while simulating A’s queries and acting
as the provider. Because event BadPBa occurs, during the
course of simulating A’s Redeem querles, A will output a
proof 7* for a statement z* ¢ Ly such that the false proof
passes verification. B can then submit (z*, 7*) to its challenger
to break the soundness. Therefore:

Pr(B wins] > Pr[Bad %]

However, since the zkSNARK is sound, we have that there
exists a negligible function e such that:

Pr[Bad’3] < Pr[B wins] < ¢

Since each of the bad events have negligible probability of
happemng, we have that Advi? (k) < €’ for some negligible
function €'.]

c) User Balance: We start by providing an intuition
behind the security proof. By Definition 3, there are six ways
that an adversarial provider may win this experiment during
the Redeem phase.

1) The adversary attempts to post a transaction which does
not match the value of the data. However, in that case
the user aborts and does not release the encryption key
K.

2) The adversary observes the transaction posted with the
ephemeral public key and extracts the corresponding
private key sk;,. A can now refund back the payment
by signing another bitcoin transaction. However, this is
infeasible due to the security of the underlying signature
scheme.

3) The adversary can extract information about the message
from the commitments {c; }. However, this would violate
the hiding property of commitments.

4) The adversary can extract information about the message
from the encrypted messages C'. However, this would vi-
olate the semantic security of the private-key encryption
scheme.

5) The adversary can invert the hash H(K) to get the
symmetric key and decrypt C'. However, given that we
will model H as a random oracle, this would violate the
one-wayness of H.

6) The adversary can extract information about the mes-
sage/key from the zkSNARK proof. However, this would
violate the zero knowledge property of the proof.

We now state the theorem that will formally prove the above

intuition.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

Theorem 3: (User Balance) If Theorem 1 holds, the
public-key encryption and signature schemes are secure, the
commitment scheme is hiding, the zkSNARK scheme is zero-
knowledge, then the proposed DPT'S scheme satisfies the user
balance property in the random oracle model as defined in
Definition 3.

Proof: Let A be an adversarial provider in the user balance
experiment ExpﬂBa. First, note that Case 2 is identical to
the first case of the Provider Balance proof, so we refer
to the proof there for this case. To prove Cases 3-6, we
define a sequence of computationally indistinguishable hybrid
experiments and show that A’s advantage in the game where
{mY} is selected is close to the experiment where {m.} is

selected. We define the hybrids as follows:

e Hybg : This is experiment ExpiﬂtBa

chosen as the challenge message.

e Hyb; : This is the same as Hyby except that CRS
is generated by the zkSNARK simulator S, and in the
challenge phase the proof during the RedeemP* call is
simulated as 7 < S(z) where z = (C, hk, {¢;}).

e Hyb, : This is the same as Hyb; except that, instead of

where {m?} was

hashing the key K, we set hx & Riobea uniformly
random value.

e Hybs : This is the same as Hyb, except that, instead
of encrypting messages {m!}, we would encrypt {m}}.
That is, C = Ex({m}}).

e Hyb, : This is the same as Hybs except that, instead of
committing to the messages {m!}, we would commit to
all {m?!}. That is, ¢; = Commit(m},r;) for all i.

Let Advijtybi denote the adversary’s advantage in Hybrid . Our
goal is to show that Advi'lybo is close to Adv:yb“, which would
imply that .4 would not be able to distinguish between whether
the user submitted one message or the other.

First, we show that Advii'\ybo - Adv:ybl is negligible. Let
A be an adversary for which the above is not true. Then
we can construct an adversary B that, given .4, would break
the underlying zero knowledge property of the zkSNARK.
B works as follows: after receiving the CRS as input, B
would run the adversarial provider A making sure to simulate
all queries asked by A. Note that 3, as the user, is able
to generate on its own the secret keys for signatures and
symmetric encryptions so it is able to answer all of A’s
queries. Once A issues the RedeemP* query and sends over its
challenge messages {m?}, {m}}, B would use {m{} to form
the statement (C, hg,{c;}), then submit it to its challenger
in the zero-knowledge game. Once it gets back the proof ,
B forwards (C,hg,m) to A. Observe that, if the proof =
is real then B simulates A’s view in Hybg, so Advi'lybo =
Prrea[B = 0] Otherwise, if the proof = is simulated then B
simulates A’s view in Hyb; so Adv;"ybl = Prgm[B = 0].
Since the underlying proof is zero-knowledge, we have that
Prrea[B = 0] — Prgm[B = 0] = negl(k). Therefore:

AdvTY® — AdVIY®t < negl(x)
Next, we show that AdvY™ - Adv'y™ is negligible. This
is indeed the case when H is a random oracle since its
distribution is statistically close to a truly random function. As

http://dx.doi.org/10.1109/JI0T.2020.2990666

a result, any computationally unbounded (poly-query) adver-
sary can differentiate between the two worlds with negligible
probability:

AdvTYP — AdVTY™ < negl(x)

Next, we show that Advi'lyb2 - Adv;'lyb:" is negligible. Let A

be an adversary for which the above is not true. Then we
can construct an adversary B that, given A, would break
the underlying semantic security of the private-key encryption
scheme. B works as follows: after receiving the CRS as
input, B would run the adversarial provider A making sure
to simulate all queries asked by .A. Note that 5, as the user,
is able to generate its own the signing keys for signatures.
However, whenever it needs to encrypt messages to send to
A, it would forward such messages to its challenger (which
holds the symmetric key). Once A issues the RedeemP* query
and sends over its challenge messages {m?}, {m}}, B would
forward these messages to its own challenger for encryption
and get back C. It then creates the simulated proof 7 <— S(z)
for z = (C, R, {c;}) and forwards (C,R,7) to A. Observe
that, if the encryption were of {m?},i.e. C' +— Ex ({m?}) then
B simulates A’s view in Hyby, so Adv'y™ = Pr,,0[B = 0]
Otherwise, if the encryption were of {m.} then B simulates
A’s view in Hybs so AdvY™ = Pr,.[B = 0]. Since
the encryption scheme is semantically secure, we have that
Pr,,0[B = 0] — Pr,,,: [B = 0] = negl(x). Therefore:

AdvY® — AdV'Y™ < negl(x)

Lastly, we show that Advf"\yb3 - Adv:yb4 is negligible. Let A
be an adversary for which the above is not true. Then we
can construct an PPT adversary B that, given A, would break
the underlying hiding property of the commitment scheme. B
works as follows: after receiving the CRS as input, B would
run the adversarial provider .4 making sure to simulate all
queries asked by A. Note that I3, as the user, is able to generate
its own the signing and symmetric encryption keys. However,
if it needs to create commitments for A as part of answering
RedeemP queries, it would need to forward such requests to
its challenger. Once A issues the RedeemP* query and sends
over its challenge messages {m?}, {m}}, B would forwards
these message pairs to its challenger for commitment to get
back {c;}. B then creates C = Ex({m!}) and generates
the simulated proof m <— S(z) for x = (C, R,{¢;}), which
it then uses to forward (C, R, m) to A. Observe that, if the
commitments were of {m{}, i.e. ¢; «~ Commit(m{,r;) then
B simulates A’s view in Hybs, so Advﬂlyb3 = Pr,o[B = 0]
Otherwise, if the commitments were of {m}} then B simulates
A’s view in Hybs so AdvY™ = Pr,:[B = 0]. Since
the commitment scheme is computationally hiding (in the
homomorphic setting even if r,,; is released), we have that
Pr,,0[B = 0] — Pry,: [B = 0] = negl(x). Therefore:

Advi—:‘yb3 — Adv:yb“ < negl(k)

Combining the negligible probabilities of each pair of succes-
sive hybrids yields:

AdvTYP* — AdVTY™ < negl(x)

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

Observe that Hybyg is just ExpY®* where b = 0 and Hyb, is

ExpY3* where b = 1. Therefore we can rewrite this as:
| Pr[ExpY®® = 1|b = 1] — Pr[Exp%®® = 1|b = 0]| < negl(x)
O

d) Privacy: By Definition 4, we observe that an adver-
sarial provider can distinguish or link between different keys
only if were able to recover the ephemeral public keys that it
is signing and certifying during the Register phase. However,
this would violate the blindness property of the RSA-based
signature scheme. We prove this in more detail below.

Theorem 4: (Privacy) If the signature scheme is blind,

the proposed DPTS scheme satisfies the privacy property as
defined in Definition 4.
Proof: An adversary A that wins in the privacy game of
Experiment 5 can be used to distinguish between two different
blind signatures. In particular, consider an adversary B of
the blind signature scheme that runs A and simulates its
oracle queries’ answers. During the learning phase, when A
makes RegU and RedeemP queries, B can simulate I/ in
its interaction with A while using the certified ephemeral
public-private key pairs when evaluating utilities and signing
transactions.

During the challenge phase, A will choose Uy and U
and send their respective ephemeral public keys to B. The
adversary B now generates ho = H (pkj,) and hy = H(pky,)
for Uy and Uy, respectively. B will submit hy and h; as
its chosen messages in the blind signature game and receive
signatures oo = BSig(sk, hy) and o1 = BSig(sk, hi_p) for
some b & {0,1}. B will forward oy to A as part of the
transRecord(l4;). After the RedeemP query, A outputs a
bit &', which B can also use as its guess. If ¥’ = b (i.e. A
wins its experiment) then the signed message is hp, thus B
can distinguish between two blind signatures. Conversely, if
the blind signature scheme is secure then the privacy property
of the DPTS scheme holds. O

B. Experimental Results

In this section, we describe in more detail the environment
used to test our scheme and provide the experimental set
up and results for different utilities. The benchmarks were
evaluated on a virtual machine running Ubuntu 18.04.3 LTS
x86_64 with a Linux 5.0.0-25-generic kernel. The processor
used was a 17-8650U CPU @ 1.90GHz with access to 8 GB
of RAM.

To implement the zkSNARK for the NP language described
in Section IV, we used the xJsnark [30] framework to write
our verification program then compile it into an arithmetic
circuit. This circuit is constructed in such a way that is
recognizable by libsnark [31], which is a C++ library that
builds a preprocessing zkSNARK for our circuit by reducing
it to a rank-1 constraint system (R1CS) and eventually to a
QAP. All operations are performed over the bilinear BN128
curve.

http://dx.doi.org/10.1109/JI0T.2020.2990666

1) Results with Linear Utility: Table II shows the tim-
ing and memory-related measurements when the utility used
U(m) = aym + ag is linear in the message and ZK-proofs
for statements in Ly are generated (see Section IV-C). The
messages used to test the system are 128-bit long, and the
coefficients a; and ay were randomly chosen from the same
group as the messages. The number of constraints used to
represent the circuit is 47143.

TABLE I
THE PERFORMANCE MEASUREMENTS FOR zkSNARK KEY GENERATION,
PROVING, AND VERIFICATION FOR A LINEAR UTILITY

Time Size
Key Generation | 6.0636 s | PK: 11.328 MB, VK: 3.24 KB
Prover 1.109 s Proof Size: 287 B
Verifier 3.5 ms

2) Results with Polynomial Utility: Table III shows the
timing and memory-related measurements when the utility
used Uy (m) = aym?® + ag is a polynomial in the message
and ZK-proofs for statements in L, are generated (see
Section IV-E). The messages used to test the system are
128-bit long, and the coefficients a; and ag were randomly
chosen from the same group as the messages. The number of
constraints used to represent the circuit is 79948.

TABLE III
THE PERFORMANCE MEASUREMENTS FOR zkSNARK KEY GENERATION,
PROVING, AND VERIFICATION FOR POLYNOMIAL UTILITY

Time Size
Key Generation | 8.092' s | PK: 19.07 MB, VK: 3.125 KB
Prover 1.716 s Proof Size: 287 B
Verifier 3.6 ms

3) Results with non-linear Utility: Table IV shows the
timing and memory requirements when the utility Uyx (m) =
max (Uynin, min (a1m? + agm, Umaz)) is a custom non-linear
function on the data, combining a range with a polynomial
for some constants U,in, Umaz, @0, a1 (functions like this
are typical of urban sensing applications). Based on this
utility, ZK-proofs for statements in Ly7,, were generated (see
Section IV-E). The messages used to test the system are 128-
bit long. The number of constraints used to represent the
circuit is 81597.

TABLE IV

THE PERFORMANCE MEASUREMENTS FOR zkSNARK KEY GENERATION,
PROVING, AND VERIFICATION FOR A CUSTOM NON-LINEAR UTILITY

Time Size
Key Generation 9.866 s PK: 19.52 MB, VK: 3.085 KB
Prover 1.6729 s Proof Size: 287 B
Verifier 3.5 ms

Thus, in the case of more complex utilities, the provider
basically has to validate only the proof 7. As shown above,
this takes a few milliseconds, allowing the provider to handle
a large number of requests in urban sensing applications.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

4) Communication overhead: Perhaps it is more instructive
to consider the communication overhead of the protocol.
Considering again the more general case of complex utilities,
during the data submission phase the user sends one message
consisting of

(val,com, o, pk;,, Cert(h.), Encyp(C), hi,).

The data utility val can be treated as a 64-bit number,
while both com and hg are 160-bit hash values. Bitcoin’s
cryptography is based on the secp256k1 elliptic curve which
is used along with the ECDSA signature algorithm. Hence
the public key pk;,, which corresponds to the user’s Bitcoin
address, has length 33 bytes. Similarly, the signature o is
bounded by 73 bytes. On the other hand, Cert(h.) is the
provider’s RSA signature on the user’s public key, so this will
contribute another 128 bytes to the total. Hence most of the
overhead comes from the proof m which is bounded by 288
bytes. Thus, without considering the size of the encrypted data
C, the fixed overhead of the protocol amounts to 570 bytes.

The rest comes from Encyp(C), the encryption of C' with
the public key of the provider. In practice, instead of encrypt-
ing large amounts of data using public key cryptography, one
uses a hybrid approach which combines the convenience of
a public-key cryptosystem with the efficiency of a symmetric
one. Thus, data are first encrypted with a symmetric key and
then the key is encrypted with the public key. In our case, this
adds an overhead of 128 bytes which is what we get if we
encrypt an 128-bit symmetric key using the provider’s RSA
public key (these numbers can be further decreased by using
elliptic curve variants).

The rest of the communication overhead comes from the
size of the encrypted data C' which is proportional to size(m),
the amount of the actual data when encrypted using a seman-
tically secure symmetric cryptosystem. As the user engages
in the protocol when she has to send some data m anyway,
we conclude that the communication overhead is minimal,
bounded by size(m) + 598 bytes.

The above analysis shows that our system does not require
any heavy computational power on behalf of the provider
while keeping user communication at a bare minimum. This
demonstrates the practicality of DPTS.

VI. DISCUSSION

DPTS emphasizes on the rewarding part of data submitted
to the provider, however as the provider cannot see the data
in advance (this would break both privacy and fairness), a
malicious user may attempt to redeem the same data twice.
This is not exactly double-spending in the traditional sense but
comes very close to it as the user may try to obtain another
val bitcoins by submitting exactly the same data or a small
variant of it (eg. a subset of it).

This problem can be solved by assuming that meters come
equipped with a Trusted Platform Module (TPM) chip that
can be used to (i) vouch for the correct operation of the
meter, and (ii) anonymously sign a hash of the data during
the initial phases of the protocol (for the use of TPM for
secure billing see [32], [33]). To protect user privacy, the

http://dx.doi.org/10.1109/JI0T.2020.2990666

TPM supports unlinkable keys that can be used to maintain
anonymity between different parties who require proof of
identity. In particular, we will assume that the hash of the
data to be submitted is digitally signed with the meter’s
Direct Anonymous Attestation (DAA)' signing key Kpaa as
exemplified below.

Let 7 be a reporting task created by the P that is sent to
all relevant households or home owners within a region. The
task asks for electricity measurements for a certain frequency
and period of time, and may look like the one shown below:

7 = (TaskID #5324, Frequency 1 min, Start Nov. 10, End
Nov. 20).

Meters that accept this task, collect the measure-
ments mq,mo,...,m, and produce a signature o’ =
Sigrpaa (#5324, ') of the TaskID and the hash h’' of
the measurements (an implicit assumption here is that meter
software has not been compromised, so the measurements
retrieved from storage match the interval requested in the task.
Code attestation may help in this respect as well).

This signature along with the task ID and the hash value
h' will be sent to the UP using Algorithm 2. The modified
return statement (line 9) of this algorithm is shown below:

9: Return ({¢;},val,rval, o, TaskID,}’ o")

During VfyUtility (Algorithm 3), P performs an additional
test which consists of checking its database for an entry that
matches the given T'askID and hash value of measurements.
If a match is found, /P aborts since the user attempts to get a
reward for already submitted data. Furthermore, the zkSNARK
proof sent must have an additional statement that shows that
the hash of the data equals A’. Hence the proof must be aug-
mented to include evidence that b/ =7 H(my,ma,...,my),
which for the case of complex utilities this is already the case.

If the proof verifies during operation Redeem (Algorithm
4), UP posts the time-locked transaction to transfer the bit-
coins. When the user releases the key K and UP obtains the
data, UP stores in a database the task ID and the hash value of
the measurements to prevent future double-spending attempts.

VII. CONCLUSIONS

In this work we developed DPTS, a data payment and
transfer scheme that can be used to trade household electricity
data with bitcoins of appropriate value. While DPTS was
described in the smart grid setting, it can also be applied in
other application domains where monetary incentives are used
to increase user participation. One such domain is participatory
or mobile crowd-sensing.

IFor completeness, we briefly summarize how DAA can be adopted in
this setting; the interested reader may look at how the scheme has been
used for remote, anonymous authentication of TPMs [34]. At the core of
the scheme is the certification of the DAA key by an issuer, which however
learns nothing about the key. Signing with such a key provides anonymity-
preserving assurance that the smart meter has a valid DAA key. Yet, neither
the verifier nor the issuer, even if they collude with each other, can tell which
meter signed a message, only that the signature comes from a valid meter.
Furthermore, DAA also allows a meter to generate in advance an arbitrarily
large set of pseudonyms which can be used with every new submission of
data.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

Of particular importance are the fairness guarantees offered
by DPTS. Indeed our scheme ensures that no party can cheat
the other as the data is released if and only if an appropriate
bitcoin payment is made. Furthermore, no information is
disclosed before or after the transfer of the data; payments
are unlinkable to each other and transactions do not leak any
information about the user or the meter. Thus the protocol is
also privacy-preserving.

Finally, we have studied the efficiency properties of our
proposal. The protocol incurs acceptable performance on the
user side and minimal overhead on the provider side.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their
comments that helped improve the paper considerably.

[1]

[3]

[4]

[5]

[6]

[7]
[8]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

M. A. Lisovich, D. K. Mulligan, and S. B. Wicker. “Inferring personal
information from demand-response systems.” IEEE Security & Privacy,
8(1), 11-20, 2010.

T. Dimitriou, G. Karame, “Enabling anonymous authorization and
rewarding in the smart grid.” In IEEE Transactions on Dependable and
Secure Computing, 14(5), 565-572, 2015.

T. Dimitriou and M. K. Awad,“Secure and scalable aggregation in the
smart grid resilient against malicious entities.” In Ad Hoc Networks, 50,
58-67, 2016.

S. Sultan. “Privacy-preserving metering in smart grid for billing, opera-
tional metering, and incentive-based schemes: A survey.” In Computers
& Security, 84, 2019.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A.T. Campbell. “A survey of mobile phone sensing.” IEEE Commu-
nications magazine 48, no. 9 (2010): 140-150.

Toannis Krontiris, Tassos Dimitriou. “A platform for privacy protection
of data requesters and data providers in mobile sensing.” In Computer
Communications 65: 43-54, 2015.

R. Cleve. “Limits on the security of coin ips when half the processors
are faulty (extended abstract).” In the 18th STOC, 1986.

Matthew K. Franklin and Michael K. Reiter. “Fair exchange with a semi-
trusted third party (extended abstract).” In the 4th ACM Conference on
Computer and Communications Security, CCS *97, pages 1-5, 1997.
N. Asokan, V. Shoup, and M. Waidner. “Optimistic fair exchange of
digital signatures.” IEEE Journal on Selected Areas in Communications,
18(4):593-610, 2000.

Iddo Bentov and Ranjit Kumaresan. “How to use bitcoin to design fair
protocols.” In CRYPTO 2014.

J. Liu, W. Li, G. O. Karame, N. Asokan, “Toward fairness of cryptocur-
rency payments.” IEEE Security & Privacy, 16(3), 81-89, 2018.

S. Dziembowski, L. Eckey and S. Faust. “Fairswap: How to fairly
exchange digital goods.” In ACM CCS, 2018.

G. Maxwell. “Zero knowledge contingent payment”, 2015.
https://en.bitcoin.it/ wiki/Zero_Knowledge_Contingent_Payment.
M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo. ‘“Zero-
knowledge contingent payments revisited: Attacks and payments for
services.” In ACM CCS, 2017.

Jingzhong Wang, Mengru Li, Yunhua He, Hong Li, Ke Xiao, and Chao
Wang. “A blockchain based privacy-preserving incentive mechanism in
crowdsensing applications.” In IEEE Access 6, 2018.

M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.N. Liu, Y. Xiang,
and R. H. Deng. “CrowdBC: A blockchain-based decentralized frame-
work for crowdsourcing.” IEEE Transactions on Parallel and Distributed
Systems 30, no. 6 (2018): 1251-1266.

Yuan Lu, Qiang Tang, and Guiling Wang. “Zebralancer: Private and
anonymous crowdsourcing system atop open blockchain.” In 38th In-
ternational Conference on Distributed Computing Systems (ICDCS),
pp. 853-865, 2018.

Huayi Duan, Yifeng Zheng, Yuefeng Du, Anxin Zhou, Cong Wang, and
Man Ho Au. “Aggregating Crowd Wisdom via Blockchain: A Private,
Correct, and Robust Realization.” In IEEE International Conference on
Pervasive Computing and Communications (PerCom2019), 2019.

[19]

[20]
[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

http://dx.doi.org/10.1109/JI0T.2020.2990666

Tassos Dimitriou, Thanassis Giannetsos, Liqun Chen. “REWARDS:
Privacy-preserving rewarding and incentive schemes for the smart elec-
tricity grid and other loyalty systems.” In Computer Communications
137: 1-14, 2019.

A. Rial and G. Danezis, “Privacy-preserving smart metering,”, in Pro-
ceedings of WPES, 2011.

D. Chaum. “Blind Signatures for Untraceable Payments.” In Advances
in Cryptology: Proceedings of CRYPTO ’82, pp. 199-203, 1982.

T.P. Pedersen. “Non-Interactive and Information-Theoretic Secure Veri-
fiable Secret Sharing.” In: Feigenbaum J. (eds) Advances in Cryptology
CRYPTO 91, pp. 120-140, 1992

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
“Quadratic span programs and succinct NIZKs without PCPs.” In
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 626-645. Springer, Berlin, Heidelberg,
2013.

M. Bellare, G. Fuchsbauer, and A. Scafuro. “NIZKs with an untrusted
CRS: security in the face of parameter subversion.” In ASIACRYPT
2016.

B. Abdolmaleki, K. Baghery, H. Lipmaa, M. Zajac. “A Subversion-
Resistant SNARK”. In Advances in Cryptology — ASIACRYPT 2017,
pp. 3-33, 2017

G. Fuchsbauer. “Subversion-Zero-Knowledge SNARKSs”. In Public-Key
Cryptography PKC 2018, pp. 315-347, 2018

A. Fiat, A. Shamir. “How To Prove Yourself: Practical Solutions to
Identification and Signature Problems.” In Advances in Cryptology —
CRYPTO’ 86, pp. 186-194, 1986

S. Bowe, A. Gabizon, M. Green, A. Zohar. “A Multi-party Protocol for
Constructing the Public Parameters of the Pinocchio zk-SNARK”. In
Financial Cryptography and Data Security 18, pp. 64-77, 2018

Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and
Steven Goldfeder. Bitcoin and cryptocurrency technologies: a compre-
hensive introduction. Princeton University Press, 2016.

Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. “xJsnark:
A Framework for Efficient Verifiable Computation.” In 2018 IEEE
Symposium on Security and Privacy (SP), pp. 944-961. IEEE, 2018.
E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza.“Succinct non-
interactive zero knowledge for a von neumann architecture.” In the 23rd
USENIX Conference on Security Symposium, SEC’14, 2014

M. Jawurek, M. Johns, and F. Kerschbaum. “Plug-in privacy for smart
metering billing.” In Privacy Enhancing Technologies Symposium, 2011.
S. Finster, and I. Baumgart. “Privacy-aware smart metering: A survey.”
IEEE Communications Surveys & Tutorials 16, no. 3, pp. 1732-1745,
2014

E. Brickell, J. Camenisch, and L. Chen. “Direct anonymous attestation.”
In 11th ACM CCS, pp. 132145, 2004.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

