SAT Distributions with Planted Assignments
and Phase Transitions between Decision and
Optimization Problems

Tassos Dimitriou

Athens Information Technology,
Markopoulo Ave., 190 02, Athens, Greece.

Abstract

We present a generator for weighted instances of MAX k-SAT in which every clause
has a weight associated with it and the goal is to maximize the total weight of
satisfied clauses. Our generator produces formulas whose hardness can be finely
tuned by two parameters p and § that control the weights of the clauses. Under the
right choice of these parameters an easy-hard-easy pattern in the search complexity
emerges which is similar to the patterns observed for traditional SAT distributions.

What is remarkable, however, is that the generated distributions seem to lie in the
middle ground between decision and optimization problems. Increasing the value of
p from 0 to 1 has the effect of changing the shape of the computational cost from
an easy-hard-easy pattern which is typical of decision problems to an easy-hard
pattern which is typical of optimization problems. Thus our distributions seem to
bridge the gap between decision and optimization versions of SAT.

Furthermore, we demonstrate that these phase transitions are related to sudden
changes to a quantity similar to the backbone of a SAT formula. In our model not
only we know how the optimal solution looks like (because we plant it in advance)
but we also give evidence that it is unique. Thus our generator comes with an
indication of optimality of the planted assignment which is basically the structural
property that is related to the phase transition phenomena observed.

1 Introduction

Phase transition phenomena in combinatorial search problems have proved a
fertile source of research activity for over a decade. An informal description of

Email address: tdim@ait.edu.gr (Tassos Dimitriou).

Preprint submitted to Elsevier Science 18 May 2005

a “phase transition” is the behavior whereby “small” changes in certain pa-
rameters of a system cause dramatic shifts in some globally observed quantity.
A typical example of such a behavior is the satisfiability (SAT') of Boolean for-
mulas. The computational cost of solving random 3-SAT instances (formulas
in Conjunctive Normal Form with 3 literals per clause) exhibits transitions
from easy to hard and back to easy [11,7] as the ratio of number of clauses
to variables increases. In combinatorial graph theory, similar phenomena have
been observed with respect to random n-vertex graphs in which edges are
added with some probability p(n); when one considers a certain property II
(connectivity, 3-colorability, etc.) then there is a value for the edge probability
p(n) where the property II appears abruptly [6,2].

The interest in phase transition phenomena stems from experimental studies of
search heuristics for NP-complete problems [4,9,11,7,8], where the probability
of a random instance having a solution is mirrored in the run-time behavior
of the methods used to find the solution. Phase transitions usually depend on
some control or order parameter that can be adjusted to control the hardness
of the problem. For example, the probability that a random graph is connected
or has a hamilton cycle depends on the edge density|[6,2]; the satisfiability and
the hardness of 3-SAT formulas depends on the ratio of clauses to variables
[4,11,5,7], and so on.

Furthermore, it has been observed that instances “outside” the threshold re-
gion are typically solved easily as opposed to instances close to the threshold
point which are much harder to solve. In addition, phase transitions for NP-
complete decision problems typically have easy-hard-easy patterns while phase
transitions for the corresponding optimization problems follow easy-hard pat-
terns [8,16,15].

Our motivation for this research is threefold; First we want to introduce a new
distribution of SAT instances that will bridge the gap and possibly help us
understand the relationship between the phase transitions of decision problems
and those of their optimization counterparts. Second, we want to identify
and locate difficult instances that can be used in the development of new
solving methods. Finally, we want to understand the characteristics of optimal
solutions and the behavior of algorithms for finding them with respect to
certain structural properties of the instances at hand.

The instances we generate are k-SAT formulas where every clause has a weight
associated with it. The goal is to find an assignment that maximizes the sum of
weights of the satisfied clauses. The generated instances are parameterized by
two quantities p and d which control the weights associated with the clauses.
By carefully setting the values of these two parameters one can generate dif-
ficult to solve formulas, thus making it possible to test algorithms on hard
generated instances only.

In addition, our generator has two more important characteristics that are
related to the values of p and 6. We generate our formulas by first splitting
the variables in two predefined sets G and B of equal size and then assigning
the weights to the clauses according to the set clause variables come from. We
demonstrate experimentally that the assignement that has set the variables
from G to true and the ones from B to false (or vice versa) is not only optimal
when ¢ is large enough but is also unique. Since any satisfiability heuristic
when fed with an instance from our generator will try to maximize the weight
of satisfied clauses, this characterization provides algorithm designers with an
a priori knowledge of the optimal assignment. We call this solution the hidden
or planted assignment. Thus by knowing what to expect, algorithm designers
will be able to evaluate better the effectiveness of their algorithms.

The second characteristic is the appearance of an easy-hard-easy pattern in
the search complexity for the optimal assignment. Although the problem we
consider here is a mazrimization one and phase transitions should exhibit “easy-
hard” patterns [8,16,15], by increasing the value of p from 0 to 1 one starts
with “easy-hard-easy” patterns which are typical of decision problems to end
up with “easy-hard” patterns which are typical of optimization problems.
Thus our distributions seem to bridge the gap between decision versions and
optimization versions of SAT.

Furthermore, we were able to link this behavior with a new threshold phe-
nomenon which is related to the uniqueness of the hidden assignment. Below
the threshold, there are other solutions that achieve equal total weight and
differ from the hidden one in a few variables. Above the threshold however,
the hidden assignment becomes the unique optimal solution. Thus there exists
a transition from a phase where there are more than one good assignments to
a phase where the planted assignment is unique. The point to be made is that
this transition coincides with the hardest to solve problem instances.

2 Generator for MAX kE-WSAT

Our generator produces weighted instances of the MAX k-SAT problem, which
we call MAX k-WSAT. In general, MAX k-WSAT consists of Boolean expres-
sions in conjunctive normal form, i.e. collection of clauses in which every clause
consists of exactly k literals and has a positive integer weight associated with
it. Given an instance of this problem, one is looking for an assignment to the
variables that satisfies a set of clauses with maximum total weight.

It is clear that MAX k-WSAT is NP-hard as MAX Ek-SAT reduces to it by
setting all weights equal to one. In this work we will present a generator for
instances for a degenerate version of MAX k-WSAT, in which all weights to

The model F, ,s (with super-clauses)

(1) Start with 2n variables, n green and n blue.

(2) (Create the formula) For every pair of variables z,y, irrespective
of their color and without repetitions, add to the formula the “super-
clause”

c(x,y) = (zy + Ty)

(3) (Assign the weights)
e For all clauses c(x,y), with probability p set the weight w(zx,y) of
the clause equal to § + 1, otherwise set it equal to .
e For all clauses ¢(x,y), such that z,y have different colors and
w(z,y) = B, with probability (1 — p)~! < 1 increase the weight
of the clause to 5 + 1.

Fig. 1. Description of the generator.

the clauses are either 3 or 341, where (3 is a fixed integer greater than 0. While
this simplification may seem very restrictive at first look, it is all we need to
create a generator of k-SAT instances with useful computational properties.
Furthermore, even when k£ = 2 the problem still remains NP-hard.

To generate a formula with the above properties we first start with 2n vari-
ables, n green and n blue, create the clauses and finally assign weights to
them. Here we adopt the view of working with weights directly and not actu-
ally creating multiple instances of the same clause as proofs become simpler.
Furthermore, as explained in Section 3, this leads to faster implementations
of heuristics treating WSAT formulas.

We call our model F},, s, where n indicates the number of variables of each
color and p,d are the parameters used to control the maximum total weight
achieved by the hidden assignment (Figure 1). The user can choose any values
for 9 and p provided p+9 < 1. The reason for this restriction will become clear
in Lemma 3. We do not include the weight (3 in the definition of the model as
this will be set to a specific value later on (Lemma 4). (While we only show the
generator for 2-WSAT formulas, the extension to k-WSAT formulas should be
straightforward.)

By looking at Figure 1 one should observe that the “clauses” ¢(z,y) are not
really clauses in the ordinary 2-SAT sense. In fact, c¢(z,y) = (z +y) - (T + 7).
We chose, however, to work with super-clauses as the results are much easier
to describe and the passing to ordinary 2-SAT expressions is again easy. We
will denote the two simple clauses of ¢(z, y) by ¢; , = (z+y) and ¢, = (T+7).

It is also clear from the model that the generated formulas are “dense” in that
they consist of all possible combinations of the 2n variables. Thus it makes

no sense to try to satisfy all super-clauses but it makes sense to try to satisfy
a suitable subset of those that incurs the maximum possible total weight.
We will give an indication later on (Lemma 7) that the best assignment (the
planted assignment as we call it) is the one that has the green variables set to
true and the blue set to false (or vice versa). However, before we proceed with
our main result we need a few definitions and preliminary results.

Definition 1 A super-clause is called monochromatic if it consists of variables
of the same color.

Definition 2 An assignment is said to split the variables if exactly n variables
are set to true and n are set to false (irrespective of their color).

We are now ready to prove the first fact that is a simple consequence of the
model F}, 5.

Lemma 3 (Monochromatic clauses are lighter on average)
If x,y have the same color then

B+ 1, with probability p
w(z,y) =
0, otherwise

If x,y have different colors then

B+ 1, with probability p + 0
w(z,y) =
0, otherwise

PROOQOF. The first statement is obvious since by definition monochromatic
clauses have weight 3 + 1 with probability p. To prove the second statement
observe that a non-monochromatic clause will have weight § 4 1 if it was
initially assigned this weight, or if it had weight 5 and with probability 6(1 —
p) ! increased its weight. The probability of these two events is p+(1—p)d(1—
p)t=p+a0. O

This lemma provides an alternative definition for our model and is used in the
proof of the optimality of the hidden assignment. The next lemma is used to
reduce the space of good assignments. Since our goal is to be able to generate
formulas where assignments are planted, this lemma allows algorithm designers
to test their algorithms by knowing what to expect for.

Lemma 4 (Look for split assignments) When the weight (3 is at least n?,
the best assignments split their variables.

PROOF. Suppose there is an assignment A that achieves total weight W
and has 0 < v < n variables set to true and 2n — v variables set to false.
We will show that by choosing (3 accordingly, there exists a better assignment
that achieves greater weight and has its variables split.

Consider the bipartite graph (L, R) formed by putting the true variables on
side L and the false on side R. Furthermore, for every pair (z,y) where x € L
and y € R add the edge from x to y and assign to it the weight of the super-
clause c(z,y).

Consider now an arbitrary super-clause c¢(x,y) = (xg + Zy). This super-clause
simply spells the fact that z and y must have different truth values in order for
c(x,y) to be satisfied and contribute its weight w(z, y) to the total sum. Thus,
given the particular assignment A, there can be at most v(2n — v) satisfied
super-clauses and the total weight W incurred by A will be equal to the sum
of the edges’ weights in the bipartite graph. Let there be m edges of weight
6 + 1 and the rest with weight 3. Then the total weight will be equal to
W =m(B+1)+[v(2n—v) —m]8 = v(2n — v) 5 + m, where the m term comes
from the edges with weight 5 + 1. In any case, m < v(2n — v) < n?. Thus,

W <v(2n—v)3+n*=n?8—[(n—v)’3—n?. (1)

Consider now any assignment A’ that have its variables split and let m/ be the
number of edges of weight 3 + 1. By the same argument as before the total
weight W’ achieved by A’ will be at least

Wl :nQﬂ_i_m/ 2 n?ﬁ'

Since 0 < v < n, by choosing 8 = n? we see that the term [(n — v)?8 — n?| in
(1) is always positive, thus making the weight W smaller than the weight W’
of any assignment with split variables. We conclude that it is always best to
look for split assignments. O

Although the previous proof focuses on the 2-SAT case, the proof generalizes
to k-SAT instances as well. For example, in the 3-SAT case we have to modify
the bipartite graph by considering “hyperedges” formed by triples of variables
x,y, 2z, where at least two of these variables belong to different sides. In this
case, the weight we assign to each such hyperedge is simply the clause weight
w(z,y,z). As in the 2-SAT case, only these clauses contribute their weights
to the total sum and there can be at most v(2n — v)(n — 1) satisfied super-
clauses. Working exactly the same way as before, we see that for 3 = n? the
best assignments split their variables.

Furthermore observe that the discussion is valid only if the super-clauses are
satisfied as a whole or at least in the NAESAT sense (NAESAT for Not All
Equal SAT, is the variant of SAT where we don’t allow all literals in a clause
to have the same truth value). To pass to ordinary 2-SAT models, since most
algorithms are not restricted in their search for assignments, we modify the
model by assigning the weight w(z, y) to each of the clauses c;y and ciy of the
super-clause. Call this new model F}, ;. Now, we have to take into account
the weight incurred by these clauses even if both literals have the same truth

value.

Lemma 5 (Equivalence of the two models) An assignment A achieves
total weight W for a formula f generated according to F, ,s if and only if
it achieves total weight W + ¢y when the formula is generated according to

7/1719757 where cy in a constant that is easily computable and depends only on
the particular formula f.

The proof is very similar to the proof of Lemma 4 and is omitted. Again we
only have to look for split assignments in the new model since by choosing
3 = n?, the best assignments for formulas generated according to F}, s split
their variables. Thus from now on we will work only with formulas that con-
sist of super-clauses. To simplify things further we will work only with split
assignments since by Lemma 4 we are allowed to do so.

Definition 6 We say an assignment has distance k from the planted one,
where 0 < k < 3, if it has split the variables and furthermore it has k blue
and n — k green variables set to true.

Thus in some sense the value of k£ counts the distance from the planted assign-
ment which has £ = 0. Our goal now is to provide evidence that for a suitable
choice of the parameter 9§, the optimal assignment is one that has the green
variables set to true and the blue variables set to false (or vice versa). We do
this by comparing the expected weight achieved by the planted assignment
with that of an assignment that is at distance £ from the hidden one.

Lemma 7 The expected total weight achieved by the hidden assignment out-
weights that achieved by an assignment at distance k.

PROOF. Consider any assignment A and let (L, R) be a bipartite graph
formed by putting the true variables of A on the left side and the false ones on
the right side of the graph. Again for any clause ¢(x,y) where z € Land y € R
add the edge from x to y and assign to it a weight equal to w(z,y) —n?. Notice
that here we have modified the edge weights a little bit. The reason is that we
want to focus only on the clauses that have weight n? + 1. Since all clauses
have weights n? or n? 4 1, by subtracting 3 = n? from the weights, we are left
with edges that have weight one, corresponding exactly to the heavier clauses.

What happens now, is that edges corresponding to monochromatic clauses
appear with probability p while edges corresponding to non-monochromatic
clauses appear with probability ¢ = p + 9.

Let’s compute now the average number of edges in the bipartite graph when
A is the planted assignment. From our construction, there are exactly n?
potential edges, each appearing with probability ¢, thus the average number
of edges is simply Ey = n?q. Consider now the case where the assignment A is
one at distance k£ from the planted. This means that there are k blue and n—k
green variables that are assigned the value true. Thus in the bipartite graph
there are exactly 2k(n — k) potential monochromatic edges and [k? + (n — k)?]
non-monochromatic ones. The expected number of edges is therefore

By =2k(n —k)p+ [k* + (n — k)*)q.

The values Ey and E}) correspond to the total weight achieved by these as-
signments in excess of the weight n?3 achieved by all assignments. If Ej is
bigger than FEj, this is an indication that the planted assignment achieves
better overall weight. This is verified easily: Ej is greater than Fj provided
5 > 0. O

The above lemma doesn’t say that it is only the planted assignment that
maximizes some WSAT formula. Other assignments may perform equally well,
as is also demonstrated in the experimental section. However, as the value of
0 increases, we expect the planted assignment not only to be optimal but to
be the unique optimal one (see Section 4).

3 Hardness Results for WSAT

Our motivation in this section is to show that easy and hard k-WSAT instances
can be predictable in advance. This will enable designers of local search SAT
heuristics to test their algorithms on hard k-SAT instances only in which the
optimal solution is known beforehand. In the experiments that follow we chose
to work with MAX 2-WSAT formulas to illustrate the fact that these formulas
become extremely difficult to optimize in direct contrast to ordinary 2-SAT
formulas, which are solvable in linear time [3]. In all the figures that follow

each sample point was computed after generating 1000 random instances of
MAX 2-WSAT.

The local search procedure we used for our tests is a modified version of
WalkSat [13] which we describe below. The main reason for choosing WalkSat
is because it is one of the best performing SAT procedures and because we

Table 1
Changes to the basic WalkSat algorithm.

WalkSat Weighted version of WalkSat
Goal Maximize the number of satisfied | Maximize the weight of satis-
clauses fied clauses

Pick a random unsatisfied clause | Pick a random unsatisfied
and flip the variable that results | clause and flip the variable that
in the smallest decrease in the | results in the smallest decrease
number of satisfied clauses in the weight of satisfied clauses

Strategy

believe that these results on hard instances will be applicable to other SAT
heuristics as well.

To apply WalkSat to formulas with weights on clauses (even if the weights
degenerate to the two values § and 3 + 1) we need the intuitive modification
of the algorithm shown on Table 1. Basically what this table says is replace
“number of satisfied clauses” with “weight of satisfied clauses”. The rest of the
algorithm remains the same. Also observe how the weighted version reduces
to the classic WalkSat when all weights are set to one. The reason for this
modification is to avoid the extra overhead in running time caused by having
multiple copies of the same clause. Since each clause would have to appear at
least 3 = n? times, this would greatly slow down the execution time of any
SAT heuristic.

10000000

8000000 A

6000000 -

4000000

Median Number of Variable Flips

2000000 -

[M e e e L
0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450

Parameter &

Fig. 2. Median number of total variable flips for random 2-WSAT formulas as a
function of the parameter §, when p = 1/2.

Figure 2 shows the median of the total number of variable flips required by
WalkSat to locate an assignment that achieves the maximum total weight (as
is implied by the hidden assignment) for 2-WSAT formulas with p equal to
% and n = 32,34,36,38 and 40. As can be seen, an easy-hard-easy pattern
emerges which results in an exponential increase in computational cost in the
hardest region similar to the behavior of ordinary 3-SAT formulas [11,7].

p=038

2500000

2000000

1500000

TN
SN
A SO \\\\\\\\\\\\\\\\\

WSS T
\\\\\\\\\\\\\\\\\\\\\{g\ﬂ*‘\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\ 500000
NI o

0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500
Parameter &

1000000

Median Number of Flips

Fig. 3. Computational cost for random 2-WSAT formulas with n = 34 and various
values of p and 4.

It is perhaps instructive at this point to comment a little on the shape of the
curves in Figure 2. Although the computational cost follows an easy-hard-
easy pattern, the second “easy” region where § is large is no longer very
easy compared to the first region where ¢ is small. This is reminiscent of
the behavior of 3-SAT(B), the bounded decision versions of 3-SAT defined by
Zhang [15], where one is looking for an assignment that violates no more than
B constraints. When B = 0, one has 3-SAT; when B is the optimal solution
cost, one has MAX 3-SAT. Thus, such distributions lie in some sense between
the decision problem and its optimization counterpart and like the WSAT
instances exhibit easy-hard- “less easy” patterns.

In general, as was shown in [8,16,14,15] and other works, the phase transitions
of some NP-complete decision problems follow easy-hard-easy patterns and
the phase transitions of some NP-hard optimization problems follow easy-hard
patterns. Thus one may ask, where is the easy-hard behavior of the WSAT
formulas? As we will see in Figure 3, WSAT formulas exhibit the behavior of
optimization problems but only when p grows larger than 1/2. Thus indeed
the value of p = 1/2 is middle ground and by increasing the value of p one
gets a wealth of distributions with higher computational costs.

Figure 3 shows the computational cost required to find a good assignment for
2-WSAT formulas with n = 34 variables and p ranging from 0.1 to 0.8. Starting
with p = 0.1 (curve in the front) we see that the point of maximum cost is
moving slowly to the right with a parallel increase in its maximum value, as p
becomes 0.4. However, when p becomes 0.5 or larger the points of maximum
cost are moving slowly to the left to acquire the maximum value when p = 0.8.
All the curves exhibit easy-hard-“less easy” patterns with the exception of the
curve for p = 0.8 which has an easy-hard pattern as ¢ increases from 0 to its
maximum value 0.200. Thus in this particular curve the computational cost
remains maximum for values of § > 0.200.

10

1.00

0.90 +

0.80 o

0.70 o

0.60 -

0.50

0.40 4

Uniqueness Probability

0.30 4

0.20 4

0.10 4

0.00 o R R R R R R R RRR RN
0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500

Rescaled 3

Fig. 4. Phase transition for p = 1/2 and various values of n.

4 Phase Transitions

An important characteristic of Figure 2 is that the transition region becomes
narrower (occurs for a smaller range of) for larger values of n when at the
same time the peak shifts to the left as n is increased.

Our goal in this section is to demonstrate a relationship between the hard re-
gion and a phase transition in the structural properties of the WSAT formulas.
It is clear that we cannot have a SAT/UNSAT transition as all instances are
unsatisfiable. A more profound concept related to phase transitions is that of
a backbone which in some sense is the set of all frozen decisions [12,14], i.e.
those with fixed outcomes for all possible solutions. For example, in SAT the
backbone of a formula is the set of all literals that are true in all satisfying
assignments [12]. A phase transition in such a case has the backbone ratio
raise from nearly 0 to nearly 1, with the hardest instances lying around the
50% point, not only in their decision version but in their optimization as well
[12,14-16]. In the case of WSAT formulas, however, we chose not to work with
backbones as there is essentially only one solution and most of the variables
have a fixed value. We were able, however, to relate the WSAT behavior with
the probability of uniqueness of the hidden assignment, which is the crucial
structural property of WSAT formulas.

Figure 4 shows the uniqueness probability of the optimal solution for p = 1/2
and a large range of values for n. Observe how the threshold function sharpens
up for larger values of n, like the satisfiability threshold function for random
k-SAT formulas[11]. So, now, the question becomes: given an arbitrary value
of n how can we determine the value of ¢ that results in the most difficult to
solve instances? The answer is given by finite-size scaling [10], in which the
horizontal axis is rescaled by a quantity that is a function of n.

11

1.00
0.90 4
0.80 4
0.70 +
0.60 i
0.50 4
0.40 +

0.30 4

Probability of Uniqueness

0.20 4

0.10 +

0.00

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Rescaled '8

Fig. 5. Phase transition for p = 1/2 and various values of n, after rescaling.

1.00
0.90 - N =40

® 0804 —+N=38

3 = N=36

o .

g 070 N=34

T 060 - N=32

&

T 050 -

0

8 0.0 -

o

& 030 A

©

E 020

2
0.10 -
0.00 R LR T

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Rescaled 3

Fig. 6. Computational cost for p = 1/2 and various values of n after rescaling.

Figure 5 shows the result of rescaling® the curves of Figure 4. The unique-
ness probability is plotted against ¢’, a rescaled version of ¢ equal to §' =
on/?\/T — €, where € = 0.56. Finally, Figure 6 demonstrates how the compu-
tational cost for various values of n collapses into a universal curve. To obtain
these data we first normalized the curves shown in Figure 2 and then applied
the rescaling described previously. We see clearly that the critical point is
when the rescaled ¢ is equal to 0.60 which corresponds to the 65% uniqueness
probability in Figure 5. Thus the main empirical observation we can draw
from these pictures is that when p = 1/2, the hardest 2-WSAT formulas lie at
the point where about 65% of them have the hidden assignment as the optimal
one.

1 Although we were able to come up with a rescaling formula that works for a wide
range of values, the results should be considered “approximate”. However, even
if we don’t know how to obtain a proof of the formula, the results are validated
experimentally.

12

——N =38
= N=34
——N=30

Probability of Uniqueness

0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500

Parameter &

Fig. 7. Phase transition for p = 0.6,0.7,0.8 and various values of n.

To summarize our findings so far, we have seen that WSAT formulas exhibit
phase transitions that are related to the uniqueness probability of the optimal
assignment. Furthermore, we saw that by increasing the value of p (Figure 3)
one obtains the hardest to solve instances, with easy-hard patterns in their
cost. An interesting question is why does this happen. We believe that when
p is large, most clauses (irrespective of their color) have large weights which
makes it extremely difficult to locate the variables that achieve the largest
overall weight. When on the other hand p is small, it is the value of § that
defines the hardest instances. Thus in this case we get easy-hard-easy patterns
with medium values for ¢ defining the most difficult to solve problems.

Another interesting question is whether the characterization we obtained using
finite size scaling for the case p = 1/2 also applies to other values of p. In
particular, it is important to know the threshold point for distributions with
large values of p as these generate the most interesting formulas from the
algorithm designer’s point of view.

Figure 7 shows how the probability of uniqueness changes as a function of ¢,
when p = 0.6,0.7,0.8 and n = 30, 34, 38. We were able to plot all these curves
in the same figure as the separation introduced by increasing the value of p
was a lot more than the separation introduced by increasing the value of n.
Furthermore, it is worthwhile to observe how the threshold function sharp-
ens up for larger values for p indicating an abrupt change in the uniqueness
probability, similar to that observed for the backbone of SAT distributions
[12,14-16].

It turns out that the rescaling formula

&' = on/*V1—¢ with €= 0.56
works equally well for other values of p (# %) provided p is kept fixed and only

13

1.00

0.90 -
0.80 A
0.70 A
0.60 -
0.50 1
0.40 -

0.30 4
——N =38

= N=34
——N=230

Probability of Uniqueness

0.20 1

0.10 4

0.00 -
j
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Rescaled &

Fig. 8. Phase transition for p = 0.7 and various values of n, after rescaling.

1.00

0.90 +
0.80 1
0.70 7
0.60 +
0.50 4
0.40 4

0.30 4
—x— N =38

—a—N=34
——N=30

0.20 4

Normalized Cost after Rescaling

0.10 1

0.00 T T T T ann T
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Rescaled &

Fig. 9. Computational cost for p = 0.7 and various values of n after rescaling.

n varies. Figure 8 shows the result of rescaling the curves of Figure 7, when
p = 0.7. When the same rescaling is applied to the normalized computational
costs of finding the best assignment for values of n = 30, 34, 38, we obtain the
universal match shown in Figure 9. The only difference is that the peak value
happens for a different value of the rescaled ¢ (in this case ¢’ = 0.46). What
is remarkable however, is that again the hardest to solve instances seem to
live at the 65% probability of uniqueness point as shown in Figure 8. Thus
using this approach one can concentrate on large values of p (where the really
hard WSAT distributions are) and use the rescaling formula to generate the
hardest to solve instances.

5 Conclusions and Future Research

In this work we presented a generator for instances of MAX k-WSAT in which
every clause has a weight associated with it and the goal is to maximize

14

the total weight of satisfied clauses. We showed that our generator produces
formulas whose hardness can be finely tuned by two parameters p and J that
control the weights of the clauses. Under the right choice of these parameters
an easy-hard-easy pattern in the search complexity emerges which is similar
to the patterns observed for traditional SAT distributions.

Furthermore, the distributions examined here seem to lie in the middle ground
between decision and optimization problems. Increasing the value of p from 0
to 1 has the effect of changing the shape of the computational cost from an
easy-hard-easy pattern typical of decision problems to an easy-hard pattern
typical of optimization problems. Thus our distributions seem to bridge the
gap between decision and optimization versions of SAT. Furthermore, the
hardest instances overall seem to be the ones with the largest value of p.
We were able to relate this behavior of WSAT formulas with a new type of
phase transition in the structural properties of the generated instances. In
particular, we showed how the hardness peak corresponds to a point where
there is a transition from formulas which have many optimal assignments to
formulas where the optimal assignment is unique. And this is perhaps the
most important characteristic of our generator; under the right choice of the
parameter ¢, not only we know that the optimal solution is unique but we also
know that it must assign (a predefined) half of the variables to TRUE and
half to FALSE. In conclusion, we believe that our generator will be useful in
the analysis and development of future SAT heuristics since by knowing what
to expect algorithm designers will better test the effectiveness of their search
procedures.

Our work leaves open some ground for further improvements and research.
Clearly, one research direction would be to eliminate the weights from the
clauses and produce a generator for [MAX] k-SAT instances directly. It seems
that the weights are only used to limit the search for split assignments so one
may ask if there is a way to do this using no weights. Unfortunately, at this
point we don’t know how this can be done without losing the structure of
the hidden assignment and the a priori knowledge of optimality. In a similar
setting, Achlioptas et al. [1] demonstrated how one can generate satisfiable
boolean formulas starting from a partially filled Latin square with guaranteed
solution and transforming these instances to k-SAT formulas by standard re-
duction techniques. However, they left open the question whether a similar
generator can be developed directly for k-SAT.

Another important question is whether the quadratic number of clauses in the
case for 2-WSAT (and the O(n*) number for the general case) can be reduced
to a linear one. Is it possible to generate formulas, even with weights, in which
the number of clauses is linear and the hidden assignment is preserved? This
would speedup the execution time of algorithms and would further strengthen
the hardness results of the generated instances.

15

Finally, our model is reminiscent of graph theoretic models in which a solution
is planted in advance (such as in the clique or coloring problem). The purpose
of planting solutions to such problems is to come up with algorithms that are
able to recover the planted structure, hoping that these algorithms will behave
equally well in real life instances. Our findings for WalkSat do not imply that
such an algorithm is unlikely to exist for the WSAT model we propose here.
Coming up with such an algorithm may pinpoint the important characteristics
of the WSAT formulas and may help in the simplification of them as well as
in the evaluation of other SAT search methods. Furthermore, coming up with
a fast algorithm, even for a smaller range of the parameters, may lead to an
efficient approximation algorithm for the general problem.

Acknowledgements

The author wishes to thank Christos Papadimitriou and the anonymous re-
viewers for some very useful comments.

References

[1] Achlioptas D., Gomes, C., Kautz H. and Selman B. Generating satisfiable
problem instances. In Proc. AAAI-00, 2000.

[2] Noga Alon, Joel H. Spencer. The probabilistic method, Wiley, 2000.

[3] Bengt Aspvall, Micahel F. Plass and Robert E. Tarjan. A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121-123, March 1979.

[4] P. Cheeseman, B. Kanefsky and W.M. Taylor. Where the really hard problems
are. In Proc. IJCAI-91, pp. 331-337, Australia, 1991.

[5] J. Crawford and L.D. Auton. Experimental results on the cross over point in
satisfiability problems. In Proc. AAAI-93, pp. 21-27, 1993

[6] P. Erdos and A. Rényi. On the evolution of random graphs. In Mat Kutato Int.
Koz, 5, 17-60, 1960.

[7] I. Gent and T. Walsh. The SAT Phase Transition. In Proc. ECAI-94, 105-1009.

[8] I. Gent and T. Walsh. The TSP Phase Transition. Artif. Intel., 88:349-358,
1996.

[9] T. Hogg, B.A. huberman and C. Williams. Phase transitions and the search
problem. Artif. Intell., 81:1-15, 1996.

16

[10] Kirkpatrick, S. and Selman, B. Critical behavior in the satisfiability of random
Boolean expressions. Science, 264, 1297-1301, 1994.

[11] Mitchell, D., Selman, B., and Levesque, H.J. Generating hard satisfiability
problems. Artificial Intelligence, Vol. 81(1-2), 1996. A previous version appeared
in Proc. AAAI-92, pp. 459-465, San Jose, CA, 1992.

[12] Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L.
Determining computational complexity from characteristic ‘phase transitions’.
In Nature, Vol. 400(8), 1999.

[13] B. Selman, H. A. Kautz and B. Cohen. Local search strategies for satisfiability
testing. In Second DIMACS Challenge on Cliques, Coloring and Satisfiability,
1993.

[14] J. Slaney and T. Walsh. Backbones in Optimization and Approximation. In
Proc. 1JCAI-01, 2001.

[15] W. Zhang. Phase transitions and backbones of 3-SAT and MAX 3-SAT. In
Proc. CP-2001.

[16] W. Zhang and R. E. Korf. A study of complexity transitions on the asymmetric
Travelling Salesman Problem. Artificial Intelligence, 81:223-239, 1996.

17

